Discontinuous phase transition in an annealed multi-state majority-vote model

被引:13
|
作者
Li, Guofeng [1 ]
Chen, Hanshuang [1 ]
Huang, Feng [2 ]
Shen, Chuansheng [3 ,4 ]
机构
[1] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Peoples R China
[2] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
[3] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
[4] Anqing Normal Univ, Dept Phys, Anqing 246011, Peoples R China
基金
美国国家科学基金会;
关键词
critical phenomena of socio-economic systems; network dynamics; agent-based models;
D O I
10.1088/1742-5468/2016/07/073403
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary q states, where q is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between the two-state MV (MV2) model and the three-state MV (MV3) model. By extensive Monte Carlo simulation and mean-field analysis, we find that the MV3 model undergoes a discontinuous order-disorder phase transition, in contrast to a continuous phase transition in the MV2 model. A central feature of such a discontinuous transition is a strong hysteresis behavior as noise intensity goes forward and backward. Within the hysteresis region, the disordered phase and ordered phase are coexisting.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Majority-vote model with a bimodal distribution of noises
    Vilela, Andre L. M.
    Moreira, F. G. B.
    de Souza, Adauto J. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (24) : 6456 - 6462
  • [22] Dynamical Critical Exponent for the Majority-Vote Model
    Abel G. da Silva Filho
    F. G. Brady Moreira
    Journal of Statistical Physics, 2002, 106 : 391 - 401
  • [23] Dynamical critical exponent for the majority-vote model
    da Silva, AG
    Moreira, FGB
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 391 - 401
  • [24] Large deviation induced phase switch in an inertial majority-vote model
    Chen, Hanshuang
    Shen, Chuansheng
    Zhang, Haifeng
    Kurths, Juergen
    CHAOS, 2017, 27 (08)
  • [25] ISOTROPIC MAJORITY-VOTE MODEL ON A SQUARE LATTICE
    DEOLIVEIRA, MJ
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) : 273 - 281
  • [26] Three-state majority-vote model on small-world networks
    Bernardo J. Zubillaga
    André L. M. Vilela
    Minggang Wang
    Ruijin Du
    Gaogao Dong
    H. Eugene Stanley
    Scientific Reports, 12
  • [27] Majority-vote model with collective influence of hierarchical structures
    Yi-Duo, Chen
    Yu-Ting, Yun
    Jian-Yue, Guan
    Zhi-Xi, Wu
    ACTA PHYSICA SINICA, 2024, 73 (02)
  • [28] Majority-vote model on triangular, honeycomb and Kagome lattices
    Santos, J. C.
    Lima, F. W. S.
    Malarz, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (02) : 359 - 364
  • [29] MAJORITY-VOTE MODEL WITH HETEROGENEOUS AGENTS ON SQUARE LATTICE
    Lima, F. W. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (11):
  • [30] Three-state majority-vote model on small-world networks
    Zubillaga, Bernardo J.
    Vilela, Andre L. M.
    Wang, Minggang
    Du, Ruijin
    Dong, Gaogao
    Stanley, H. Eugene
    SCIENTIFIC REPORTS, 2022, 12 (01)