Ends of Gradient Ricci Solitons

被引:2
|
作者
Munteanu, Ovidiu [1 ]
Wang, Jiaping [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06268 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Ricci solitons; Ricci flow; Ends; METRIC-MEASURE-SPACES; COMPLETE MANIFOLDS; SHRINKING; GEOMETRY; CURVATURE; CLASSIFICATION; SINGULARITIES; DIAMETER;
D O I
10.1007/s12220-022-01047-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Self-similar solutions to Ricci flows, called Ricci solitons, are important geometric objects. To address the question whether new solitons can be constructed from existing ones through connected sums, we are led to investigate the issue of connectedness at infinity for solitons. The paper provides a brief account of our work along this line as well as a new result. The new result says that an n-dimensional gradient shrinking Ricci soliton is necessarily connected at infinity if its scalar curvature is bounded above by n/3.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] η-RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON δ- LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    Siddiqi, Mohd Danish
    Akyol, Mehmet Akif
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 529 - 545
  • [22] ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS
    Mo, Xiaohuan
    Zhu, Hongmei
    Zhu, Ling
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1763 - 1773
  • [23] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    ActaMathematicaSinica, 2015, 31 (11) : 1798 - 1804
  • [24] On gradient solitons of the Ricci–Harmonic flow
    Hong Xin Guo
    Robert Philipowski
    Anton Thalmaier
    Acta Mathematica Sinica, English Series, 2015, 31 : 1798 - 1804
  • [25] The Weyl tensor of gradient Ricci solitons
    Cao, Xiaodong
    Tran, Hung
    GEOMETRY & TOPOLOGY, 2016, 20 (01) : 389 - 436
  • [26] RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1267 - 1279
  • [27] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    Acta Mathematica Sinica,English Series, 2015, (11) : 1798 - 1804
  • [28] Maximum principles and gradient Ricci solitons
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) : 73 - 81
  • [29] RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS
    Yang, Fei
    Zhang, Liangdi
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (04) : 533 - 547
  • [30] ON COMPLETE GRADIENT SHRINKING RICCI SOLITONS
    Cao, Huai-Dong
    Zhou, Detang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 85 (02) : 175 - 185