Numerical simulation of fuel layered distribution iron ore sintering technology

被引:10
|
作者
Shrestha, Siddhartha [1 ,2 ]
Xu, Jin [1 ]
Yu, Aibing [1 ]
Zhou, Zongyan [1 ,2 ]
机构
[1] Monash Univ, Dept Chem Engn, ARC Res Hub Computat Particle Technol, Clayton, Vic, Australia
[2] Jiangxi Univ Sci & Technol, Int Res Inst Resources Energy Environm & Mat, Nanchang 330013, Jiangxi, Peoples R China
基金
澳大利亚研究理事会;
关键词
Iron ore sintering; numerical simulation; operational parameters; FLDS; sensitivity analysis; flame frond speed; maximum temperature; melt quality index; HIGH-TEMPERATURE ZONE; COMBUSTION CHARACTERISTICS; MATHEMATICAL-MODEL; MOISTURE TRANSFER; BED; PREDICTION; PARAMETERS; EFFICIENCY; STRENGTH;
D O I
10.1080/03019233.2021.1968259
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
FLDS (Fuel Layered Distribution Sintering) is a technology that can effectively reduce fuel consumption with evenly distributed heat pattern in the sintering bed compared to the conventional iron ore sintering. In this paper, a numerical model is established and used to predict the FLDS performance in terms of six different indicators such as FFS (Flame Front Speed), sintering time, maximum temperature, DTMT (Duration Time in Melting Temperature), MQI (Melt Quality Index) and VC (Cooling Velocity). The results show that the FLDS can improve the quality indices of the sinter product and make the process more stable. Moreover, both air velocity and bed height have significant influences on the quality metrics in FLDS operation. Sensitivity analysis shows that the order of sensitivity to air velocity is MQI > VC > FFS > sintering time > DTMT > maximum temperature, while that to the bed height is MQI > DTMT > sintering time > FFS > VC > maximum temperature. The findings are of significance for providing a guideline for FLDS operation.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 50 条
  • [41] Numerical simulation of the Co-combustion of coke and biochar coupled with methane injection in iron ore sintering processes
    Cai, Jin
    Kong, Xiangwei
    Cheng, Liu
    Yu, Mingzhu
    Qi, Haochen
    Zhang, Jiqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 1114 - 1130
  • [42] Numerical simulation model of the iron ore sintering process directly describing the agglomeration phenomenon of granules in the packed bed
    Ramos, MV
    Kasai, E
    Kano, J
    Nakamura, T
    ISIJ INTERNATIONAL, 2000, 40 (05) : 448 - 454
  • [43] CO Reduction Process Technology and Development of Iron Ore Sintering Process
    Zhong, Tingliang
    Li, Xiaohai
    She, Xuefeng
    Wang, Yanjiang
    Liu, Peng
    Zuo, Haibin
    Xue, Qingguo
    ISIJ International, 2024, 64 (12): : 1737 - 1757
  • [44] Green iron ore sintering
    Dell'Amico, M.
    Fung, P.
    Lovel, R.
    Manuel, J.
    O'Connor, M.
    Green Processing 2004, 2004, 2004 (02): : 73 - 80
  • [45] Biomass for iron ore sintering
    Zandi, Mohammad
    Martinez-Pacheco, Maria
    Fray, Trevor A. T.
    MINERALS ENGINEERING, 2010, 23 (14) : 1139 - 1145
  • [46] Iron Ore Sintering: Process
    Fernandez-Gonzalez, D.
    Ruiz-Bustinza, I.
    Mochon, J.
    Gonzalez-Gasca, C.
    Verdeja, L. F.
    MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2017, 38 (04): : 215 - 227
  • [47] Iron ore sintering with charcoal
    Lovel, R.
    Vining, K.
    Dell'Amico, M.
    TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY SECTION C-MINERAL PROCESSING AND EXTRACTIVE METALLURGY, 2007, 116 (02): : 85 - 92
  • [48] Thermodynamic Simulation and Transformation Behaviours of Lead during Iron Ore Sintering
    Wang, Yannan
    Lv, Wei
    Fan, Xiaohui
    Gan, Min
    ISIJ INTERNATIONAL, 2021, 61 (11) : 2731 - 2736
  • [49] Modeling and simulation of heat front propagation in the iron ore sintering process
    Mitterlehner, J
    Loeffler, G
    Winter, F
    Hofbauer, H
    Schmid, H
    Zwittag, E
    Buergler, TH
    Pammer, O
    Stiasny, H
    ISIJ INTERNATIONAL, 2004, 44 (01) : 11 - 20
  • [50] Combustion mechanism of benzene in iron ore sintering process: experimental and simulation
    Zhi-gang Que
    Jin-ming Shi
    Xian-bin Ai
    Journal of Iron and Steel Research International, 2024, 31 : 195 - 203