Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs

被引:162
|
作者
Yao, Ning [1 ,2 ]
Li, Linchao [1 ]
Feng, Puyu [3 ]
Feng, Hao [4 ]
Liu, De Li [5 ,6 ]
Liu, Yang [1 ]
Jiang, Kongtao [1 ]
Hu, Xiaotao [1 ,2 ]
Li, Yi [1 ,2 ]
机构
[1] Northwest Agr & Forestry Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest Agr & Forestry Univ, Educ Minist, Key Lab Agr Water & Soil Engn, Yangling 712100, Shaanxi, Peoples R China
[3] Univ Technol Sydney, Sch Life Sci, Fac Sci, Sydney, NSW, Australia
[4] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
[5] Wagga Wagga Agr Inst, NSW Dept Primary Ind, Wagga Wagga, NSW 2650, Australia
[6] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia
关键词
China; Drought; Projection; Global climate model; Drought characteristics; Standardized precipitation and evapotranspiration index; CLIMATE-CHANGE; METEOROLOGICAL DROUGHT; ARIDITY INDEX; IMPACT; UNCERTAINTY; PERFORMANCE; YIELD; VARIABILITY; EVOLUTION; SEVERITY;
D O I
10.1016/j.scitotenv.2019.135245
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Droughts have destructive impacts on agricultural production; thus, drought projections are vital for the development of future drought mitigation strategies. This work aimed to project a standardized precipitation and evapotranspiration index (SPEI) at 3-, 6- and 12-month timescales for the period 2011-2100 under two representative concentration pathway (RCP) scenarios - RCP 4.5 and RCP 8.5 in mainland China and to assess the changes in various drought indices over a baseline period of 1961-2000. The spatiotemporal variations in drought characteristics (e.g., the drought occurrence time, duration, severity, peak, and frequency and the percentage of stations suffering from drought (PSSD) were estimated by the projected SPEI for the periods 2011-2040, 2041-2070 and 2071-2100. The results showed that mainland China would experience more frequent and severe droughts in the future than in the baseline period, as denoted by SPEI and the generated drought variables. In particular, drier areas of northwestern China were likely to suffer from worse drought conditions than those in other areas, with PSSD values of 60% and 81% by 2100 under the RCP4.5 and RCP 8.5 scenarios, respectively. Although the annual precipitation was projected to increase in most regions, drought conditions would still worsen because of increased the minimum and maximum air temperatures. However, the GCMs contributed more uncertainties to the projection of the SPEI than the stations or the RCPs, because the GCMs made a larger contribution to the variance (>40%). The SPEI performed better than the other indices that only accounted for the influence of a single variable. The relationship between crop yields and the three drought indices varied by month, crop (maize and cotton), and timescale (3- and 6-month). The drought projections from our study can provide invaluable information for stakeholders in developing regionally specific drought adaptation strategies in the face of climate change. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index
    Chen, Huopo
    Sun, Jianqi
    JOURNAL OF CLIMATE, 2015, 28 (13) : 5430 - 5447
  • [2] CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index
    Tam, Benita Y.
    Szeto, Kit
    Bonsal, Barrie
    Flato, Greg
    Cannon, Alex J.
    Rong, Robin
    CANADIAN WATER RESOURCES JOURNAL, 2019, 44 (01) : 90 - 107
  • [3] Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia
    Isia, Ismallianto
    Hadibarata, Tony
    Jusoh, Muhammad Noor Hazwan
    Bhattacharjya, Rajib Kumar
    Shahedan, Noor Fifinatasha
    Bouaissi, Aissa
    Fitriyani, Norma Latif
    Syafrudin, Muhammad
    SUSTAINABILITY, 2023, 15 (01)
  • [4] A Drought Index: The Standardized Precipitation Evapotranspiration Irrigation Index
    He, Liupeng
    Tong, Liang
    Zhou, Zhaoqiang
    Gao, Tianao
    Ding, Yanan
    Ding, Yibo
    Zhao, Yiyang
    Fan, Wei
    WATER, 2022, 14 (13)
  • [5] A drought index: The standardized precipitation evapotranspiration runoff index
    Wang, Long
    Yu, Hang
    Yang, Maoling
    Yang, Rui
    Gao, Rui
    Wang, Ying
    JOURNAL OF HYDROLOGY, 2019, 571 : 651 - 668
  • [6] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Liu, Changhong
    Yang, Cuiping
    Yang, Qi
    Wang, Jiao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Changhong Liu
    Cuiping Yang
    Qi Yang
    Jiao Wang
    Scientific Reports, 11
  • [8] Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951-2020)
    Sun, Jiwei
    Bi, Shuoben
    Bashir, Bashar
    Ge, Zhangxi
    Wu, Kexin
    Alsalman, Abdullah
    Ayugi, Brian Odhiambo
    Alsafadi, Karam
    SUSTAINABILITY, 2023, 15 (14)
  • [9] Interdecadal Variation of the Number of Days with Drought in China Based on the Standardized Precipitation Evapotranspiration Index (SPEI)
    Wang, Zunya
    Zhang, Qiang
    Sun, Shao
    Wang, Pengling
    JOURNAL OF CLIMATE, 2022, 35 (06) : 2003 - 2018
  • [10] Drought characteristics of Henan province in 1961-2013 based on Standardized Precipitation Evapotranspiration Index
    Shi, Benlin
    Zhu, Xinyu
    Hu, Yunchuan
    Yang, Yanyan
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2017, 27 (03) : 311 - 325