Application of an explicit min-max MPC to a scaled laboratory process

被引:17
|
作者
de la Peña, DM [1 ]
Ramírez, DR [1 ]
Camacho, EF [1 ]
Alamo, T [1 ]
机构
[1] Univ Seville, Escuela Super Ingn, Dept Ingn Sistemas & Automat, Seville 41092, Spain
关键词
predictive control; minimax techniques; multi-parametric programming; piecewise linear controllers; uncertainty;
D O I
10.1016/j.conengprac.2004.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Min-max model predictive control (MMMPC) requires the on-line solution of a min-max problem, which can be computationally demanding. The piecewise affine nature of MMMPC has been proved for linear systems with quadratic performance criterion. This paper shows how to move most computations off-line obtaining the explicit form of this control law by means of a heuristic algorithm. These results are illustrated with an application to a scaled laboratory process with dynamics fast enough to preclude the use of numerical solvers. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1463 / 1471
页数:9
相关论文
共 50 条
  • [41] A MIN-MAX THEOREM ON POTENTIALS
    KAUFMAN, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 799 - 800
  • [42] Interval Observer based Min-max MPC scheme for LPV Systems with bounded uncertainties
    Wu, Yuying
    Zhang, Langwen
    Ling, Keck-Voon
    Xie, Wei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2645 - 2650
  • [43] MORE ON MIN-MAX ALLOCATION
    PORTEUS, EL
    YORMARK, JS
    MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (09): : 502 - 507
  • [44] MIN-MAX INTERVAL CALCULUS
    JAHN, KU
    MATHEMATISCHE NACHRICHTEN, 1976, 71 : 267 - 272
  • [45] A Second Order Cone Formulation of min-max MPC with zone control for LPV Systems
    Marquez-Ruiz, Alejandro
    Patino, Julian
    Ozkan, Leyla
    Espinosa, Jairo
    2019 IEEE 4TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC): AUTOMATIC CONTROL AS KEY SUPPORT OF INDUSTRIAL PRODUCTIVITY, 2019,
  • [46] Min-max multiway cut
    Svitkina, Z
    Tardos, É
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 207 - 218
  • [47] SYNTHESIS OF MIN-MAX STRATEGIES
    GUTMAN, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 46 (04) : 515 - 523
  • [48] A min-max theorem on tournaments
    Chen, Xujin
    Hu, Xiaodong
    Zang, Wenan
    SIAM JOURNAL ON COMPUTING, 2007, 37 (03) : 923 - 937
  • [49] Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties
    Limon, D
    Alamo, T
    Salas, F
    Camacho, EF
    AUTOMATICA, 2006, 42 (05) : 797 - 803
  • [50] Dynamic min-max problems
    Schwiegelshohn, U
    Thiele, L
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1999, 9 (02): : 111 - 134