Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels

被引:53
|
作者
Michler, Thorsten [1 ]
Naumann, Joerg [2 ]
Hock, Martin [3 ]
Berreth, Karl [4 ]
Balogh, Michael P. [5 ]
Sattler, Erich [6 ]
机构
[1] Adam Opel AG, Russelsheim, Germany
[2] BMW AG, Munich, Germany
[3] Linde AG, Pullach, Germany
[4] MPA, Stuttgart, Germany
[5] Gen Motors Res & Dev, Warren, MI USA
[6] MPA Stuttgart, Stuttgart, Germany
关键词
Hydrogen embrittlement; Austenitic stainless steel; Cold forming; Williamson-Hall; HIGH-PRESSURE HYDROGEN; INDUCED RESIDUAL-STRESSES; GAS EMBRITTLEMENT; PRE-STRAIN; DEFORMATION; FRACTURE; SUSCEPTIBILITY; SENSITIZATION; PLASTICITY; RESISTANCE;
D O I
10.1016/j.msea.2015.01.054
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Austenitic stainless steels with three different nickel contents were cold worked to various forming degrees at various temperatures to obtain a wide variety of cold worked microstructures. Dislocation density analyses using the Williamson-Hall method provide first indications that strain hardening using technically relevant cold forming parameters increases the susceptibility of austenitic stainless steels to hydrogen environment embrittlement mainly by creating a microstructure with a "critical" amount of dislocations. Although an effect of prior-existing martensite may not be totally excluded, this effect seems to be minor compared to the effect of dislocation substructure. Macroscopic residual stresses have no significant influence on the susceptibility of cold worked austenitic stainless steels to hydrogen environment embrittlement in tensile tests. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 50 条
  • [31] EFFECTS OF NITROGEN ON HYDROGEN EMBRITTLEMENT IN AISI TYPE-316, TYPE-321 AND TYPE-347 AUSTENITIC STAINLESS-STEELS
    ROZENAK, P
    JOURNAL OF MATERIALS SCIENCE, 1990, 25 (05) : 2532 - 2538
  • [32] Development of materials testing equipment in high pressure hydrogen and hydrogen environment embrittlement of austenitic stainless steels
    Fukuyama, S
    Zhang, L
    Yokogawa, K
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2004, 68 (02) : 62 - 65
  • [33] Modelling of hydrogen diffusion leading to embrittlement in austenitic stainless steels
    Cavaliere, P.
    Sadeghi, B.
    Perrone, A.
    Marsano, D.
    Marzanese, A.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2024, 208
  • [34] Hydrogen Embrittlement of Austenitic Stainless Steels with Different Surface Treatments
    Okayasu, Mitsuhiro
    Wen, Hao
    Kondo, Ryutaro
    INTERNATIONAL JOURNAL OF STEEL STRUCTURES, 2024, 24 (03) : 477 - 487
  • [35] Carbon effect on hydrogen diffusivity and embrittlement in austenitic stainless steels
    Kim, Kyung-Shik
    Kang, Jee-Hyun
    Kim, Sung-Joon
    Corrosion Science, 2021, 180
  • [36] Carbon effect on hydrogen diffusivity and embrittlement in austenitic stainless steels
    Kim, Kyung-Shik
    Kang, Jee-Hyun
    Kim, Sung-Joon
    CORROSION SCIENCE, 2021, 180
  • [37] HYDROGEN EMBRITTLEMENT OF ULTRAFINE-GRAINED AUSTENITIC STAINLESS STEELS
    Astafurova, E. G.
    Astafurov, S., V
    Maier, G. G.
    Moskvina, V. A.
    Melnikov, E., V
    Fortuna, A. S.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2018, 54 (01) : 25 - 45
  • [38] STUDY OF HYDROGEN EMBRITTLEMENT OF UNSTABLE AUSTENITIC STAINLESS-STEELS
    BRICOUT, JP
    MISSIAEN, R
    AZOU, PF
    FIDELLE, JP
    BAVAY, JC
    MEMOIRES ET ETUDES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1986, 83 (02): : 105 - 118
  • [39] HYDROGEN EMBRITTLEMENT OF SUS 316 AUSTENITIC STAINLESS STEEL WELDMENTS.
    Matsuda, Fukuhisa
    Ushio, Masao
    Nakagawa, Hiroji
    Nakata, Kazuhiro
    Transactions of JWRI (Japanese Welding Research Institute), 1985, 14 (01): : 63 - 67
  • [40] Hydrogen embrittlement of additively manufactured austenitic stainless steel 316 L
    Bertsch, K. M.
    Nagao, A.
    Rankouhi, B.
    Kuehl, B.
    Thoma, D. J.
    CORROSION SCIENCE, 2021, 192