Analytical solution for the time-fractional telegraph equation by the method of separating variables

被引:195
|
作者
Chen, J. [2 ,3 ]
Liu, F. [1 ,4 ]
Anh, V. [1 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Jimei Univ, Coll Math, Xiamen 361021, Peoples R China
[4] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
fractional telegraph equation; multivariate Mittag-Leffler function; method of separating variables;
D O I
10.1016/j.jmaa.2007.06.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE). We discuss and derive the analytical solution of the TFTE with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin boundary conditions. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1364 / 1377
页数:14
相关论文
共 50 条
  • [21] Solution of Semi-Boundless Mixed Problem for Time-fractional Telegraph Equation
    Shu-qin Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 611 - 618
  • [22] Analytical solution for a generalized space-time fractional telegraph equation
    Fino, Ahmad Z.
    Ibrahim, Hassan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1813 - 1824
  • [23] Numerical Methods for Solving the Time-fractional Telegraph Equation
    Wei, Leilei
    Liu, Lijie
    Sun, Huixia
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1509 - 1528
  • [24] Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
    Momani, Shaher
    Odibat, Zaid
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (02) : 488 - 494
  • [25] Artificial Boundary Conditions for Time-Fractional Telegraph Equation
    Kong, Wang
    Huang, Zhongyi
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (02): : 360 - 386
  • [26] ANALYTICAL SOLUTION OF THE TIME-FRACTIONAL FISHER EQUATION BY USING ITERATIVE LAPLACE TRANSFORM METHOD
    Bairwa, Rajendra Kumar
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2018, 17 (3-4): : 191 - 200
  • [27] Solution method for the time-fractional hyperbolic heat equation
    Dassios, Ioannis
    Font, Francesc
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (15) : 11844 - 11855
  • [28] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [29] SINC-CHEBYSHEV COLLOCATION METHOD FOR TIME-FRACTIONAL ORDER TELEGRAPH EQUATION
    Sweilam, N. H.
    Nagy, A. M.
    El-Sayed, A. A.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (02) : 162 - 174
  • [30] Analytical approximate solution of time-fractional Fornberg-Whitham equation by the fractional variational iteration method
    Ibis, Birol
    Bayram, Mustafa
    ALEXANDRIA ENGINEERING JOURNAL, 2014, 53 (04) : 911 - 915