Analytical solution for the time-fractional telegraph equation by the method of separating variables

被引:195
|
作者
Chen, J. [2 ,3 ]
Liu, F. [1 ,4 ]
Anh, V. [1 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Jimei Univ, Coll Math, Xiamen 361021, Peoples R China
[4] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
fractional telegraph equation; multivariate Mittag-Leffler function; method of separating variables;
D O I
10.1016/j.jmaa.2007.06.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE). We discuss and derive the analytical solution of the TFTE with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin boundary conditions. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1364 / 1377
页数:14
相关论文
共 50 条
  • [1] A note on "Analytical solution for the time-fractional telegraph equation by the method of separating variables"
    Geng, Xiaoxiao
    Cheng, Hao
    Fan, Wenping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (02)
  • [2] Analytical Solution for the Time-Fractional Telegraph Equation
    Huang, F.
    JOURNAL OF APPLIED MATHEMATICS, 2009,
  • [3] An approximate analytical solution of time-fractional telegraph equation
    Das, S.
    Vishal, K.
    Gupta, P. K.
    Yildirim, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7405 - 7411
  • [4] An analytical solution of the time-fractional telegraph equation describing neutron transport in a nuclear reactor
    Tawfik, A. M.
    Abdou, M. A.
    Gepreel, K. A.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (04) : 1181 - 1186
  • [5] An analytical solution of the time-fractional telegraph equation describing neutron transport in a nuclear reactor
    Ashraf M. Tawfik
    M. A. Abdou
    Khaled A. Gepreel
    Indian Journal of Physics, 2022, 96 : 1181 - 1186
  • [6] An efficient numerical method for a time-fractional telegraph equation
    Huang, Jian
    Cen, Zhongdi
    Xu, Aimin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (05) : 4672 - 4689
  • [7] A local meshless method to approximate the time-fractional telegraph equation
    Kumar, Alpesh
    Bhardwaj, Akanksha
    Dubey, Shruti
    ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 3473 - 3488
  • [8] Neural Network Method for Solving Time-Fractional Telegraph Equation
    Ibrahim, Wubshet
    Bijiga, Lelisa Kebena
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [9] A MODIFIED REPRODUCING KERNEL METHOD FOR A TIME-FRACTIONAL TELEGRAPH EQUATION
    Wang, Yulan
    Du, Mingling
    Temuer, Chaolu
    THERMAL SCIENCE, 2017, 21 (04): : 1575 - 1580
  • [10] A local meshless method to approximate the time-fractional telegraph equation
    Alpesh Kumar
    Akanksha Bhardwaj
    Shruti Dubey
    Engineering with Computers, 2021, 37 : 3473 - 3488