On correlating Levy processes

被引:30
|
作者
Eberlein, Ernst [1 ]
Madan, Dilip B. [2 ]
机构
[1] Univ Freiburg, Dept Math Stochast, D-79104 Freiburg, Germany
[2] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
来源
JOURNAL OF RISK | 2010年 / 13卷 / 01期
关键词
RETURNS; MODEL;
D O I
10.21314/JOR.2010.219
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, a relatively simple approach to correlating unit period returns of Levy processes is developed. We write the Levy process as a time changed Brownian motion and correlate the Brownian motions. It is shown that sample correlations understate the required correlation between the Brownian motions and we show how to correct for this. Pairwise tests illustrate the adequacy of the model and the significant improvement offered over the Gaussian alternative. We therefore advocate that the correlated time change model is a simple basic alternative to dependence modeling. From the perspective of explaining portfolio returns in higher dimensions we find adequacy for long-short portfolios. The long-only portfolios appear to require a more complex modeling of dependency. We leave these questions for future research.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 50 条
  • [21] The multifractal nature of Levy processes
    Jaffard, S
    PROBABILITY THEORY AND RELATED FIELDS, 1999, 114 (02) : 207 - 227
  • [22] The Levy Laplacian and stable processes
    Saitô, K
    CHAOS SOLITONS & FRACTALS, 2001, 12 (14-15) : 2865 - 2872
  • [23] Levy processes and Fourier multipliers
    Banuelos, Rodrigo
    Bogdan, Krzysztof
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) : 197 - 213
  • [24] CRAMER ESTIMATE FOR LEVY PROCESSES
    BERTOIN, J
    DONEY, RA
    STATISTICS & PROBABILITY LETTERS, 1994, 21 (05) : 363 - 365
  • [25] FRACTAL DIMENSIONALITY OF LEVY PROCESSES
    SESHADRI, V
    WEST, BJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1982, 79 (14): : 4501 - 4505
  • [26] Dynamical approach to Levy processes
    Allegrini, P
    Grigolini, P
    West, BJ
    PHYSICAL REVIEW E, 1996, 54 (05) : 4760 - 4767
  • [27] Categorial Independence and Levy Processes
    Gerhold, Malte
    Lachs, Stephanie
    Schuermann, Michael
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [28] Kac-Levy Processes
    Ratanov, Nikita
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (01) : 239 - 267
  • [29] Levy processes for image modeling
    Poliannikov, OV
    Bao, YF
    Krim, H
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 233 - 236
  • [30] A Construction of Reflecting Levy Processes
    Ibragimov, I. A.
    Smorodina, N. V.
    Faddeev, M. M.
    DOKLADY MATHEMATICS, 2019, 99 (01) : 71 - 74