ACC deaminase from plant growth-promoting bacteria affects crown gall development

被引:32
|
作者
Hao, Youai [1 ]
Charles, Trevor C. [1 ]
Glick, Bernard R. [1 ]
机构
[1] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada
关键词
Agrobacterium tumefaciens; crown gall; ethylene; ACC deaminase; plant growth;
D O I
10.1139/W07-099
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to a-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS(-) (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.
引用
收藏
页码:1291 / 1299
页数:9
相关论文
共 50 条
  • [41] Effects of growth-promoting bacteria on soybean root activity, plant development, and yield
    Moretti, Luiz Gustavo
    Crusciol, Carlos A. C.
    Kuramae, Eiko E.
    Bossolani, Joao W.
    Moreira, Adonis
    Costa, Nidia R.
    Alves, Cleiton J.
    Pascoaloto, Isabo M.
    Rondina, Artur B. L.
    Hungria, Mariangela
    AGRONOMY JOURNAL, 2020, 112 (01) : 418 - 428
  • [42] A plant's perception of growth-promoting bacteria and their metabolites
    Abou Jaoude, Renee
    Luziatelli, Francesca
    Ficca, Anna Grazia
    Ruzzi, Maurizio
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [43] Plant growth-promoting bacteria as inoculants in agricultural soils
    de Souza, Rocheli
    Ambrosini, Adriana
    Passaglia, Luciane M. P.
    GENETICS AND MOLECULAR BIOLOGY, 2015, 38 (04) : 401 - 419
  • [44] Plant growth-promoting bacteria for phytostabilization of mine tailings
    Grandlic, Christopher J.
    Mendez, Monica O.
    Chorover, Jon
    Machado, Blenda
    Maier, Raina M.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (06) : 2079 - 2084
  • [45] The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation
    Kong, Zhaoyu
    Glick, Bernard R.
    ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 71, 2017, 71 : 97 - 132
  • [46] Inoculants of plant growth-promoting bacteria for use in agriculture
    Bashan, Y
    BIOTECHNOLOGY ADVANCES, 1998, 16 (04) : 729 - 770
  • [47] Use of plant growth-promoting bacteria to facilitate phytoremediation
    Gamalero, Elisa
    Glick, Bernard R.
    AIMS MICROBIOLOGY, 2024, 10 (02): : 415 - 448
  • [48] SUSTAINABLE FARMING USING PLANT GROWTH-PROMOTING BACTERIA
    Makki, R. M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2023, 21 (03): : 2363 - 2382
  • [49] Plant growth-promoting endophytic bacteria on maize and sorghum
    Alves de Aquino, Joao Pedro
    de Macedo Junior, Francisco Baibosa
    Lopes Antunes, Jadson Emanuel
    Barreto Figueiredo, Marcia do Vale
    de Alcantara Neto, Francisco
    Fermin de Araujo, Ademir Sergio
    PESQUISA AGROPECUARIA TROPICAL, 2019, 49
  • [50] Biocontrol and plant growth-promoting activities of airborne bacteria
    Beatriz G. Guardado-Fierros
    Miguel A. Lorenzo-Santiago
    Manuel R. Kirchmayr
    Olga A. Patrón-Soberano
    Jacobo Rodriguez-Campos
    Silvia M. Contreras-Ramos
    World Journal of Microbiology and Biotechnology, 2025, 41 (4)