Spectral geometry of spacetime

被引:4
|
作者
Kopf, T [1 ]
机构
[1] Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] Silesian Univ, Inst Math, Opava 74601, Czech Republic
[3] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G1, Canada
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2000年 / 14卷 / 22-23期
关键词
D O I
10.1142/S0217979200001886
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.
引用
收藏
页码:2359 / 2365
页数:7
相关论文
共 50 条
  • [21] Finsler spacetime geometry in physics
    Pfeifer, Christian
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16
  • [22] From holography to the geometry of the spacetime
    Pelegrin, Jose A. S.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (01)
  • [23] Spacetime Geometry with Geometric Calculus
    David Hestenes
    Advances in Applied Clifford Algebras, 2020, 30
  • [24] On the Geometry of the Conformal Group in Spacetime
    Gresnigt, N. G.
    Renaud, P. F.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (02) : 193 - 200
  • [25] Spacetime Geometry with Geometric Calculus
    Hestenes, David
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (04)
  • [26] Thermodynamical equilibrium and spacetime geometry
    T. Chrobok
    H.-H. v. Borzeszkowski
    General Relativity and Gravitation, 2006, 38 : 397 - 415
  • [27] Spacetime geometry of acoustics and electromagnetism
    Lucas Burns
    Tatsuya Daniel
    Stephon Alexander
    Justin Dressel
    Quantum Studies: Mathematics and Foundations, 2024, 11 : 27 - 67
  • [28] Electrodynamics and Spacetime Geometry: Foundations
    Cabral, Francisco
    Lobo, Francisco S. N.
    FOUNDATIONS OF PHYSICS, 2017, 47 (02) : 208 - 228
  • [29] Convex functions and spacetime geometry
    Gibbons, GW
    Ishibashi, A
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (21) : 4607 - 4627
  • [30] The coupling of matter and spacetime geometry
    Jimenez, Jose Beltran
    Heisenberg, Lavinia
    Koivisto, Tomi
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (19)