High temperature pyrolysis of preceramic polymers to microporous amorphous ceramics

被引:0
|
作者
Dismukes, JP
Johnson, JW
Pizzulli, JL
McEvoy, RA
机构
关键词
D O I
暂无
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Pyrolysis of preceramic polymer precursor (PCP's) as a route to nonoxide ceramics has bean studied for over thirty years. Typically, however, the emphasis has been on structural applications as ceramic fibers, coatings or as infiltration media for monolithic or ceramic-fiber reinforced ceramics. This paper presents data on five methods recently discovered for the synthesis of microporous nonoxide ceramics, with surface area up to 780m(2)/gm and micropore volume up to 0.28cm(3)/gm, by PCP pyrolysis. Pyrolysis of pure PCP's in ammonia produces microporous materials stable over a pyrolysis temperature range of 500-1000 degrees C, whereas pyrolysis of pure PCP's in inert gas yields microporous materials only over a limited range of pyrolysis temperatures from about 425-625 degrees C. Micropore neck closure is postulated as the mechanism limiting temperature stability.
引用
收藏
页码:339 / 346
页数:8
相关论文
共 50 条
  • [41] Additive Manufacturing of High-Temperature Preceramic-Derived SiOC Hybrid Functional Ceramics
    Li, Zheng
    Khuje, Saurabh
    Islam, Abdullah
    Ren, Shenqiang
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (22)
  • [42] Modeling the pyrolysis of preceramic polymers: A kinetic study of the polycarbosilane SMP-10
    Key, Thomas S.
    Patel, Dipen K.
    Wilks, Garth B.
    Cinibulk, Michael K.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (13) : 6356 - 6365
  • [43] TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY OF AMORPHOUS HIGH POLYMERS
    HIRSCH, G
    REHAGE, G
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1969, 8 (05) : 385 - &
  • [44] Advances in the Synthesis of Preceramic Polymers for the Formation of Silicon-Based and Ultrahigh-Temperature Non-Oxide Ceramics
    Ackley, Brandon J.
    Martin, Kara L.
    Key, Thomas S.
    Clarkson, Caitlyn M.
    Bowen, John J.
    Posey, Nicholas D.
    Ponder Jr, James F.
    Apostolov, Zlatomir D.
    Cinibulk, Michael K.
    Pruyn, Timothy L.
    Dickerson, Matthew B.
    CHEMICAL REVIEWS, 2023, 123 (08) : 4188 - 4236
  • [45] Non-oxide and oxide ceramics from preceramic polymers for composite components
    Ziegler, G
    Kleebe, HJ
    Suttor, D
    ENGINEERING CERAMICS '96: HIGHER RELIABILITY THROUGH PROCESSING, 1997, 25 : 45 - 60
  • [46] Structure-Property Relationships in Amorphous Microporous Polymers
    Bonakala, Satyanarayana
    Balasubramanian, Sundaram
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (03): : 557 - 565
  • [47] Advances in the Synthesis of Preceramic Polymers for the Formation of Silicon-Based and Ultrahigh-Temperature Non-Oxide Ceramics
    Ackley, Brandon J.
    Martin, Kara L.
    Key, Thomas S.
    Clarkson, Caitlyn M.
    Bowen, John J.
    Posey, Nicholas D.
    Ponder Jr, James F.
    Apostolov, Zlatomir D.
    Cinibulk, Michael K.
    Pruyn, Timothy L.
    Dickerson, Matthew B.
    CHEMICAL REVIEWS, 2023, : 4188 - 4236
  • [48] Macro- and micro-cellular porous ceramics from preceramic polymers
    Colombo, P
    Bernardo, E
    COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (16) : 2353 - 2359
  • [49] Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review
    Bernardo, Enrico
    Fiocco, Laura
    Parcianello, Giulio
    Storti, Enrico
    Colombo, Paolo
    MATERIALS, 2014, 7 (03) : 1927 - 1956
  • [50] SYNTHESIS OF AMORPHOUS AND CRYSTALLINE ALUMINOSILICATE POWDERS FOR ER APPLICATIONS USING PRECERAMIC POLYMERS
    BARANWAL, R
    LAINE, RM
    MUELLER, BL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 191 - POLY