Inequalities for unified integral operators of generalized refined convex functions

被引:0
|
作者
Zahra, Moquddsa [1 ]
Ashraf, Muhammad [1 ]
Farid, Ghulam [2 ]
Nonlaopon, Kamsing [3 ]
机构
[1] Univ Wah, Dept Math, Wah Cantt, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
refined; (alpha; h - m)-convex function; integral operators; fractional integrals; unified integral operators; bounds; HADAMARD-TYPE;
D O I
10.3934/math.2022346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the bounds of unified integral operators are studied by using a new notion called refined (alpha, h - m) -p-convex function. The upper and lower bounds in the form of Hadamard inequality are established. From the results of this paper, refinements of well-known inequalities can be obtained by imposing additional conditions.
引用
收藏
页码:6218 / 6233
页数:16
相关论文
共 50 条
  • [41] On a unified integral operator forφ-convex functions
    Kwun, Young Chel
    Zahra, Moquddsa
    Farid, Ghulam
    Zainab, Saira
    Kang, Shin Min
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [42] On a unified integral operator for φ-convex functions
    Young Chel Kwun
    Moquddsa Zahra
    Ghulam Farid
    Saira Zainab
    Shin Min Kang
    Advances in Difference Equations, 2020
  • [43] QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 781 - 793
  • [44] SOME INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Kavurmaci, Havva
    Avci, Merve
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (03): : 253 - 259
  • [45] Some new Hermite-Hadamard type inequalities for p-convex functions with generalized fractional integral operators
    Vivas-Cortez, Miguel
    Hussain, Sabir
    Latif, Muhammad Amer
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 549 - 562
  • [46] Generalized Fractional Integral Inequalities for MT-Non-Convex and pq-Convex Functions
    Wang, Wei
    Ul Haq, Absar
    Saleem, Muhammad Shoaib
    Zahoor, Muhammad Sajid
    Haq, Absar Ul
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [47] Hermite-Hadamard Type Inequalities for B-1-Convex Functions Involving Generalized Fractional Integral Operators
    Yesilce, Ilknur
    Adilov, Gabil
    FILOMAT, 2018, 32 (18) : 6457 - 6464
  • [48] Unified integral inequalities comprising pathway operators
    Mishra, A. M.
    Kumar, D.
    Purohit, S. D.
    AIMS MATHEMATICS, 2020, 5 (01): : 399 - 407
  • [49] Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Artion Kashuri
    Hüseyin Budak
    Advances in Difference Equations, 2020
  • [50] NEW GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Mohammed, Pshtiwan Othman
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 511 - 519