The Bezier variant of Kantorovitch operators

被引:0
|
作者
Gupta, V [1 ]
机构
[1] Netaji Subhas Inst Technol, Sch Appl Sci, New Delhi 110045, India
关键词
rate of convergence; bounded variation; total variation; Baskakov-Kantorovitch operators; Szasz-Kantorovitch operators;
D O I
10.1016/S0898-1221(04)90019-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we define generalized Kantorovitch-type operators, for particular values our operators reduce to the well-known Szasz-Kantorovitch operators and Baskakov-Kantorovitch operators. We estimate the rate of convergence of the Bezier variant of these generalized operators for bounded variation functions. Here we also remark that for a particular value (c = 0) the second central moment was not estimated correctly in [1], which leads to the major error in the main results of [1]. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
  • [41] ON WAVELET TYPE GENERALIZED BEZIER OPERATORS
    Karsli, Harun
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (03): : 439 - 452
  • [42] Approximation by Durrmeyer-Bezier operators
    Gupta, Vijay
    Mohapatra, R. N.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (04) : 1491 - 1498
  • [43] Simultaneous approximation for Bezier variant of Szasz-Mirakyan-Durrmeyer operators (vol 328, pg 101, 2007)
    Gupta, Vijay
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 1485 - 1485
  • [44] An estimate on the convergence of MKZ-Bezier operators
    Zeng, Xiao-Ming
    Lian, Bo-Yong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3023 - 3028
  • [45] VARIATION DETRACTING PROPERTY OF THE BEZIER TYPE OPERATORS
    Radu, Cristina
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2008, 23 : 23 - 28
  • [46] Bezier-Bernstein-Durrmeyer type operators
    Kajla, Arun
    Acar, Tuncer
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [47] Bezier-Baskakov-Beta Type Operators
    Kajlaa, Arun
    Ozgerb, Faruk
    Yadava, Jyoti
    FILOMAT, 2022, 36 (18) : 6735 - 6750
  • [48] Approximation by a Generalized Szasz-Bezier Operators
    Qi, Qiulan
    Guo, Dandan
    FILOMAT, 2022, 36 (02) : 669 - 682
  • [49] Approximation of a kind of new type Bezier operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 10
  • [50] Bezier-Baskakov-Beta Type Operators
    Kajla, Arun
    Ozgerb, Faruk
    Yadav, Jyoti
    FILOMAT, 2022, 36 (19) : 6735 - 6750