Synchronization of oscillators arising from second-order, and higher, nonlinear couplings

被引:6
|
作者
Wood, Connor J. [1 ,2 ]
Camley, Robert E. [1 ,2 ]
机构
[1] Univ Colorado Colorado Springs, UCCS Biofrontiers Ctr, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
[2] Univ Colorado Colorado Springs, Dept Phys, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
关键词
Synchronization; Nonlinear coupling; Phase synchronization; Perturbation; Kuramoto model; Aronson model; Arnold tongue; LAYERED MAGNETIC-STRUCTURES; MODEL;
D O I
10.1007/s11071-022-07232-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We explore a system of two coupled nonlinear pendula, with the lowest-order coupling term being quadratic, rather than the more typical linear coupling term. We show that synchronization can occur in this system, but with the synchronization frequency lying below either of the original independent frequencies, in contrast to the usual case where the synchronization frequency is between the two frequencies of the independent pendula. Both phase synchronization and amplitude synchronization are found, and one can have situations, for example, where phase synchronization exists, but not amplitude synchronization. We develop analytic formulas to understand the frequency synchronization.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 50 条
  • [31] Linear control in a lattice of coupled second-order oscillators
    Alvarez-Ramirez, J
    Puebla, H
    Espinosa, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (01): : 185 - 195
  • [32] Nonlinear systems of second-order ODEs
    Cerda, Patricio
    Ubilla, Pedro
    BOUNDARY VALUE PROBLEMS, 2008, 2008 (1)
  • [33] FORCED SECOND-ORDER NONLINEAR OSCILLATION
    TEUFEL, H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A308 - A308
  • [34] Nonlinear Systems of Second-Order ODEs
    Patricio Cerda
    Pedro Ubilla
    Boundary Value Problems, 2008
  • [35] Second-order duality for nonlinear programming
    Yang, XM
    Yang, XQ
    Teo, KL
    Hou, SH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (05): : 699 - 708
  • [36] Modeling of second-order nonlinear metasurfaces
    Achouri, Karim
    Kiselev, Andrei
    Martin, Olivier J. F.
    NEW JOURNAL OF PHYSICS, 2022, 24 (02):
  • [37] On a nonlinear second-order difference equation
    Stevo Stević
    Bratislav Iričanin
    Witold Kosmala
    Zdeněk Šmarda
    Journal of Inequalities and Applications, 2022
  • [38] FORCED SECOND-ORDER NONLINEAR OSCILLATION
    TEUFEL, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (01) : 148 - &
  • [39] OSCILLATION OF NONLINEAR SECOND-ORDER EQUATIONS
    BOBISUD, LE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (03) : 501 - &
  • [40] Nonlinear Second-Order Topological Insulators
    Zangeneh-Nejad, Farzad
    Fleury, Romain
    PHYSICAL REVIEW LETTERS, 2019, 123 (05)