Synchronization of oscillators arising from second-order, and higher, nonlinear couplings

被引:6
|
作者
Wood, Connor J. [1 ,2 ]
Camley, Robert E. [1 ,2 ]
机构
[1] Univ Colorado Colorado Springs, UCCS Biofrontiers Ctr, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
[2] Univ Colorado Colorado Springs, Dept Phys, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
关键词
Synchronization; Nonlinear coupling; Phase synchronization; Perturbation; Kuramoto model; Aronson model; Arnold tongue; LAYERED MAGNETIC-STRUCTURES; MODEL;
D O I
10.1007/s11071-022-07232-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We explore a system of two coupled nonlinear pendula, with the lowest-order coupling term being quadratic, rather than the more typical linear coupling term. We show that synchronization can occur in this system, but with the synchronization frequency lying below either of the original independent frequencies, in contrast to the usual case where the synchronization frequency is between the two frequencies of the independent pendula. Both phase synchronization and amplitude synchronization are found, and one can have situations, for example, where phase synchronization exists, but not amplitude synchronization. We develop analytic formulas to understand the frequency synchronization.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 50 条
  • [1] Synchronization of oscillators arising from second-order, and higher, nonlinear couplings
    Connor J. Wood
    Robert E. Camley
    Nonlinear Dynamics, 2022, 108 : 597 - 611
  • [2] General nonlinear analysis of second-order oscillators
    Buonomo, A
    Lo Schiavo, A
    ELECTRONICS LETTERS, 2000, 36 (05) : 396 - 397
  • [3] SYNCHRONIZATION OF A CLASS OF SECOND-ORDER NONLINEAR SYSTEMS
    Mijolaro, A. P.
    Aberto, L. F. C.
    Bretas, N. G.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (11): : 3461 - 3471
  • [4] Exponential Cluster Phase Synchronization Conditions for Second-Order Kuramoto Oscillators
    Wu, Liang
    Chen, Haoyong
    Bashir, Tasarruf
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1238 - 1242
  • [5] Synchronization and stabilization of fractional second-order nonlinear complex systems
    Mohammad Pourmahmood Aghababa
    Nonlinear Dynamics, 2015, 80 : 1731 - 1744
  • [6] Synchronization and stabilization of fractional second-order nonlinear complex systems
    Aghababa, Mohammad Pourmahmood
    NONLINEAR DYNAMICS, 2015, 80 (04) : 1731 - 1744
  • [7] On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators
    Grzybowski, J. M. V.
    Macau, E. E. N.
    Yoneyama, T.
    CHAOS, 2016, 26 (11)
  • [8] Stability in a Hebbian Network of Kuramoto Oscillators with Second-Order Couplings for Binary Pattern Retrieve
    Zhao, Xiaoxue
    Li, Zhuchun
    Xue, Xiaoping
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02): : 1124 - 1159
  • [9] Equivalent Mathematical Representation of Second-Order Damped, Driven Nonlinear Oscillators
    Elias-Zuniga, Alex
    Martinez-Romero, Oscar
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [10] SYNTHETIC NONLINEAR SECOND-ORDER OSCILLATORS ON RIEMANNIAN MANIFOLDS AND THEIR NUMERICAL SIMULATION
    Fiori, Simone
    Cervigni, Italo
    Ippoliti, Mattia
    Menotta, Claudio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1227 - 1262