Nitrogen-phosphorus doped starch carbon enhanced biohydrogen production

被引:4
|
作者
Zhou, Chen [2 ]
Zhang, Huiwen [3 ]
Zhang, Jishi [1 ,2 ]
Yang, Junwei [2 ]
Yang, Mengchen [2 ]
Zang, Lihua [2 ]
Yang, Qinzheng [1 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Coll Environm Sci & Engn, Jinan 250353, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Coll Bioengn, Jinan 250353, Peoples R China
关键词
Nitrogen and phosphorus doped; starch carbon; Material characteristics; Hydrogen production; Soluble microbial products; Metabolic pathway; Microbial community structure; FERMENTATIVE HYDROGEN-PRODUCTION; ANAEROBIC FERMENTATION; BIOCHAR; WASTE; ACIDS; PERFORMANCE; NITRIDE; GLUCOSE; WATER; IRON;
D O I
10.1016/j.ijhydene.2022.06.173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To solve the thermodynamic limitations on the hydrogen (H-2) yield by dark fermentation (DF), the conductive carbons are usually used to mediate the H-2-DF. In this work, the nitrogen (N)-phosphorus (N) doped starch carbon (NPSC) was prepared and characterized to investigate its influence on H-2-DF. NPSC effectively raise H-2 yield compared with starch-derived carbon (SC). The optimal dosage of SC (400 mg/L) and NPSC (600 mg/L) caused the highest H-2 yield of 219.5 and 261.2 mL/g glucose, respectively, being higher than the control yield (161.4 mL/g glucose). Factually, compared with the control group without any carbon, NPSC optimized the microbial community structure and increased the abundance of C. butyricum from 19.09% to 30.87%. This fact increased the shift of metabolic pathway to butyric acid evolution, thereby promoting the substrate conversion level to H-2. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:28372 / 28384
页数:13
相关论文
共 50 条
  • [21] Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions
    Vitousek, Peter M.
    Porder, Stephen
    Houlton, Benjamin Z.
    Chadwick, Oliver A.
    ECOLOGICAL APPLICATIONS, 2010, 20 (01) : 5 - 15
  • [22] Strigolactone regulates nitrogen-phosphorus balance in rice
    Sun, Huwei
    Wang, Hanyun
    Chu, Chengcai
    SCIENCE CHINA-LIFE SCIENCES, 2024, 67 (02) : 428 - 430
  • [23] Strigolactone regulates nitrogen-phosphorus balance in rice
    Huwei Sun
    Hanyun Wang
    Chengcai Chu
    Science China Life Sciences, 2024, 67 : 428 - 430
  • [24] Preparation of molybdenum phosphide nanoparticles/nitrogen-phosphorus co-doped carbon nanosheet composites for efficient hydrogen evolution reaction
    Sun, Yu
    Jiu, Hongfang
    Tian, Jiao
    Zhang, Lixin
    Han, Tao
    Guo, Fengbo
    Qiu, Minyang
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 284
  • [25] THE FIRST SULFUR(VI)-NITROGEN-PHOSPHORUS MACROCYCLES
    NI, YZ
    LOUGH, AJ
    RHEINGOLD, AL
    MANNERS, I
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1995, 34 (09): : 998 - 1001
  • [26] Strigolactone regulates nitrogen-phosphorus balance in rice
    Huwei Sun
    Hanyun Wang
    Chengcai Chu
    Science China(Life Sciences) , 2024, (02) : 428 - 430
  • [27] Starch: a potential substrate for biohydrogen production
    Vendruscolo, Francielo
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (03) : 293 - 302
  • [28] Effect of fertilization with sulfur and nitrogen on nitrogen-phosphorus management of maize
    Podlesna, Anna
    Podlesny, Janusz
    Klikocka, Hanna
    PRZEMYSL CHEMICZNY, 2017, 96 (06): : 1374 - 1377
  • [29] Use of Multiple-Unit Evaporation Plants in the Production of Nitrogen-Phosphorus Fertilizer.
    Leverash, V.I.
    Khimicheskaya Promyshlennost', 1975, (08): : 52 - 55
  • [30] Nitrogen-phosphorus doped graphitic nano onion-like structures: experimental and theoretical studies
    Martinez-Iniesta, Armando D.
    Morelos-Gomez, Aaron
    Munoz-Sandoval, Emilio
    Lopez-Urias, Florentino
    RSC ADVANCES, 2021, 11 (05) : 2793 - 2803