Local explicitly correlated second-order Moller-Plesset perturbation theory with pair natural orbitals

被引:84
|
作者
Tew, David P. [1 ]
Helmich, Benjamin [2 ]
Haettig, Christof [2 ]
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 135卷 / 07期
关键词
perturbation theory; PNO calculations; CLUSTER CORRELATION ENERGIES; ZETA BASIS-SETS; TERMS; IMPLEMENTATION; APPROXIMATION; FORMULATION; RESOLUTION; IDENTITY; CUSP;
D O I
10.1063/1.3624370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three-and four-electron integrals that arise in explicitly correlated methods. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624370]
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Explicitly correlated second-order Moller-Plesset methods with auxiliary basis sets
    Klopper, W
    Samson, CCM
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15): : 6397 - 6410
  • [12] Analytical nuclear gradients of the explicitly correlated Moller-Plesset second-order energy
    Hoefener, Sebastian
    Klopper, Wim
    MOLECULAR PHYSICS, 2010, 108 (13) : 1783 - 1796
  • [13] Explicitly correlated atomic orbital basis second order Moller-Plesset theory
    Hollman, David S.
    Wilke, Jeremiah J.
    Schaefer, Henry F.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (06):
  • [14] Analytical energy gradients for local second-order MOller-Plesset perturbation theory using intrinsic bond orbitals
    Dornbach, Mark
    Werner, Hans-Joachim
    MOLECULAR PHYSICS, 2019, 117 (9-12) : 1252 - 1263
  • [15] Alternative formulation of explicitly correlated third-order Moller-Plesset perturbation theory
    Ohnishi, Yu-ya
    Ten-no, Seiichiro
    MOLECULAR PHYSICS, 2013, 111 (16-17) : 2516 - 2522
  • [16] Complete basis set limits of local second-order MOller-Plesset perturbation theory
    Jorgensen, Kameron R.
    Ramasesh, Vinay V.
    Hannibal, Sonja
    DeYonker, Nathan J.
    Wilson, Angela K.
    MOLECULAR PHYSICS, 2013, 111 (9-11) : 1178 - 1189
  • [17] Application of Local Second-Order Moller-Plesset Perturbation Theory to the Study of Structures in Solution
    Dieterich, Johannes M.
    Oliveira, Joao C. A.
    Mata, Ricardo A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3053 - 3060
  • [18] Tensor factorizations of local second-order Moller-Plesset theory
    Yang, Jun
    Kurashige, Yuki
    Manby, Frederick R.
    Chan, Garnet K. L.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (04):
  • [19] Dispersion-corrected Moller-Plesset second-order perturbation theory
    Tkatchenko, Alexandre
    DiStasio, Robert A., Jr.
    Head-Gordon, Martin
    Scheffler, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (09):
  • [20] An explicitly correlated second order Moller-Plesset theory using a frozen Gaussian geminal
    May, AJ
    Manby, FR
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (10): : 4479 - 4485