Local explicitly correlated second-order Moller-Plesset perturbation theory with pair natural orbitals

被引:84
|
作者
Tew, David P. [1 ]
Helmich, Benjamin [2 ]
Haettig, Christof [2 ]
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 135卷 / 07期
关键词
perturbation theory; PNO calculations; CLUSTER CORRELATION ENERGIES; ZETA BASIS-SETS; TERMS; IMPLEMENTATION; APPROXIMATION; FORMULATION; RESOLUTION; IDENTITY; CUSP;
D O I
10.1063/1.3624370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three-and four-electron integrals that arise in explicitly correlated methods. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624370]
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Pair natural orbitals in explicitly correlated second-order moller-plesset theory
    Tew, David P.
    Haettig, Christof
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (03) : 224 - 229
  • [2] Local explicitly correlated second- and third-order Moller-Plesset perturbation theory with pair natural orbitals
    Haettig, Christof
    Tew, David P.
    Helmich, Benjamin
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):
  • [3] Eliminating the domain error in local explicitly correlated second-order Moller-Plesset perturbation theory
    Werner, Hans-Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (10):
  • [4] Explicitly correlated second-order Moller-Plesset perturbation theory employing pseudospectral numerical quadratures
    Bokhan, Denis
    Trubnikov, Dmitrii N.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):
  • [5] Communications: Explicitly correlated second-order Moller-Plesset perturbation method for extended systems
    Shiozaki, Toru
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15):
  • [6] Communication: Explicitly correlated four-component relativistic second-order Moller-Plesset perturbation theory
    Ten-no, Seiichiro
    Yamaki, Daisuke
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (13):
  • [7] A scaled explicitly correlated F12 correction to second-order MOller-Plesset perturbation theory
    Urban, L.
    Thompson, T. H.
    Ochsenfeld, C.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04):
  • [8] Explicitly correlated second-order Moller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context
    Wang, Yang Min
    Haettig, Christof
    Reine, Simen
    Valeev, Edward
    Kjrgaard, Thomas
    Kristensen, Kasper
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (20):
  • [9] Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Moller-Plesset perturbation theory
    Gyoerffy, Werner
    Knizia, Gerald
    Werner, Hans-Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (21):
  • [10] Analytical energy gradients for local second-order Moller-Plesset perturbation theory
    El Azhary, A
    Rauhut, G
    Pulay, P
    Werner, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5185 - 5193