Partial islands and subregion complexity in geometric secret-sharing model

被引:30
|
作者
Bhattacharya, Aranya [1 ]
Bhattacharyya, Arpan [2 ]
Nandy, Pratik [1 ]
Patra, Ayan K. [3 ]
机构
[1] Indian Inst Sci, Ctr High Energy Phys, CV Raman Ave, Bangalore 560012, Karnataka, India
[2] Indian Inst Technol, Gandhinagar 382355, Gujarat, India
[3] HBNI, Theory Div, Saha Inst Nucl Phys, 1-AF Bidhannagar, Kolkata 700064, India
关键词
AdS-CFT Correspondence; Black Holes; Black Holes in String Theory; Models of Quantum Gravity;
D O I
10.1007/JHEP12(2021)091
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the holographic subregion complexity of a radiation subsystem in a geometric secret-sharing model of Hawking radiation in the "complexity = volume" proposal. The model is constructed using multiboundary wormhole geometries in AdS(3). The entanglement curve for secret-sharing captures a crossover between two minimal curves in the geometry apart from the usual eternal Page curve present for the complete radiation entanglement. We compute the complexity dual to the secret-sharing minimal surfaces and study their "time" evolution. When we have access to a small part of the radiation, the complexity shows a jump at the secret-sharing time larger than the Page time. Moreover, the minimal surfaces do not have access to the entire island region for this particular case. They can only access it partially. We describe this inaccessibility in the context of "classical" Markov recovery.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Secret-sharing matroids need not be algebraic
    Ben-Efraim, Aner
    DISCRETE MATHEMATICS, 2016, 339 (08) : 2136 - 2145
  • [22] Improving quantum secret-sharing schemes
    Nascimento, ACA
    Mueller-Quade, J
    Imai, H
    PHYSICAL REVIEW A, 2001, 64 (04): : 423111 - 423115
  • [23] Generalized semiquantum secret-sharing schemes
    Gheorghiu, Vlad
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [24] Secret-sharing with a class of ternary codes
    Ding, CS
    Kohel, DR
    Ling, S
    THEORETICAL COMPUTER SCIENCE, 2000, 246 (1-2) : 285 - 298
  • [25] Robust Computational Secret Sharing and a Unified Account of Classical Secret-Sharing Goals
    Bellare, Mihir
    Rogaway, Phillip
    CCS'07: PROCEEDINGS OF THE 14TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2007, : 172 - +
  • [26] Secret-Sharing Schemes for Very Dense Graphs
    Beimel, Amos
    Mintz, Yuval
    Farras, Oriol
    JOURNAL OF CRYPTOLOGY, 2016, 29 (02) : 336 - 362
  • [27] Secret-Sharing Schemes for Very Dense Graphs
    Amos Beimel
    Oriol Farràs
    Yuval Mintz
    Journal of Cryptology, 2016, 29 : 336 - 362
  • [28] Multi-linear Secret-Sharing Schemes
    Beimel, Amos
    Ben-Efraim, Aner
    Padro, Carles
    Tyomkin, Ilya
    THEORY OF CRYPTOGRAPHY (TCC 2014), 2014, 8349 : 394 - 418
  • [29] The access structure of some secret-sharing schemes
    Renvall, A
    Ding, CS
    INFORMATION SECURITY AND PRIVACY: 1ST AUSTRALASIAN CONFERENCE, ACISP 96, 1996, 1172 : 67 - 78
  • [30] A Survey on Perfectly Secure Verifiable Secret-sharing
    Chandramouli, Anirudh
    Choudhury, Ashish
    Patra, Arpita
    ACM COMPUTING SURVEYS, 2022, 54 (11S)