The convergence ball and error analysis of the two-step Secant method

被引:3
|
作者
Lin, Rong-fei [1 ]
Wu, Qing-biao [2 ]
Chen, Min-hong [3 ]
Khan, Yasir [2 ]
Liu, Lu [2 ]
机构
[1] Taizhou Univ, Dept Math, Linhai 317000, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310012, Zhejiang, Peoples R China
基金
浙江省自然科学基金;
关键词
two-step secant method; estimate of radius; convergence ball; Lipschitz continuous; CONTINUOUS DIVIDED DIFFERENCES; CHEBYSHEV-HALLEY METHODS; NEWTON-LIKE METHODS; BANACH-SPACES; EQUATIONS; KANTOROVICH; THEOREM;
D O I
10.1007/s11766-017-3487-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order, we obtain an estimate of the radius of the convergence ball for the two-step secant method. Moreover, we also provide an error estimate that matches the convergence order of the two-step secant method. At last, we give an application of the proposed theorem.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 50 条
  • [31] Local convergence of a relaxed two-step Newton like method with applications
    I. K. Argyros
    Á. A. Magreñán
    L. Orcos
    J. A. Sicilia
    Journal of Mathematical Chemistry, 2017, 55 : 1427 - 1442
  • [32] Local Convergence and the Dynamics of a Two-Step Newton-Like Method
    Argyros, Ioannis K.
    Alberto Magrenan, A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (05):
  • [33] Convergence of a Two-Step Iterative Method for Nondifferentiable Operators in Banach Spaces
    Kumar, Abhimanyu
    Gupta, Dharmendra K.
    Martinez, Eulalia
    Singh, Sukhjit
    COMPLEXITY, 2018,
  • [34] A two-step Steffensen's method under modified convergence conditions
    Amat, S.
    Busquier, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) : 1084 - 1092
  • [35] Local convergence of a relaxed two-step Newton like method with applications
    Argyros, I. K.
    Magrenan, A. A.
    Orcos, L.
    Sicilia, J. A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (07) : 1427 - 1442
  • [36] On an improved local convergence analysis for the Secant method
    Argyros, Ioannis K.
    Ren, Hongmin
    NUMERICAL ALGORITHMS, 2009, 52 (02) : 257 - 271
  • [37] New improved convergence analysis for the secant method
    Alberto Magrenan, A.
    Argyros, Ioannis K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 119 : 161 - 170
  • [38] On an improved local convergence analysis for the Secant method
    Ioannis K. Argyros
    Hongmin Ren
    Numerical Algorithms, 2009, 52 : 257 - 271
  • [39] Convergence ball and error analysis of Ostrowski-Traub’s method
    BI Wei-hong 1 WU Qing-biao 1 REN Hong-min 2 1 Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2010, (03) : 374 - 378
  • [40] Optimization of two-step batch processes and the method of compensation for random error
    Bjorkestol, Kirsten
    Sivertsen, Edvard
    Naes, Tormod
    JOURNAL OF CHEMOMETRICS, 2012, 26 (06) : 311 - 321