The convergence ball and error analysis of the two-step Secant method

被引:3
|
作者
Lin, Rong-fei [1 ]
Wu, Qing-biao [2 ]
Chen, Min-hong [3 ]
Khan, Yasir [2 ]
Liu, Lu [2 ]
机构
[1] Taizhou Univ, Dept Math, Linhai 317000, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310012, Zhejiang, Peoples R China
基金
浙江省自然科学基金;
关键词
two-step secant method; estimate of radius; convergence ball; Lipschitz continuous; CONTINUOUS DIVIDED DIFFERENCES; CHEBYSHEV-HALLEY METHODS; NEWTON-LIKE METHODS; BANACH-SPACES; EQUATIONS; KANTOROVICH; THEOREM;
D O I
10.1007/s11766-017-3487-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order, we obtain an estimate of the radius of the convergence ball for the two-step secant method. Moreover, we also provide an error estimate that matches the convergence order of the two-step secant method. At last, we give an application of the proposed theorem.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 50 条
  • [1] The convergence ball and error analysis of the two-step Secant method
    LIN Rong-fei
    WU Qing-biao
    CHEN Min-hong
    KHAN Yasir
    LIU Lu
    AppliedMathematics:AJournalofChineseUniversities, 2017, 32 (04) : 397 - 406
  • [2] The convergence ball and error analysis of the two-step Secant method
    Rong-fei Lin
    Qing-biao Wu
    Min-hong Chen
    Yasir Khan
    Lu Liu
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 397 - 406
  • [3] On the Convergence Ball and Error Analysis of the Modified Secant Method
    Lin, Rongfei
    Wu, Qingbiao
    Chen, Minhong
    Lei, Xuemin
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [4] The Convergence Ball and Error Analysis of the Relaxed Secant Method
    Lin, Rongfei
    Wu, Qingbiao
    Chen, Minhong
    Liu, Lu
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [5] HOMOCENTRIC CONVERGENCE BALL OF THE SECANT METHOD
    Liang Kewei Dept.of Math.
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2007, (03) : 353 - 365
  • [6] Homocentric convergence ball of the secant method
    Liang K.
    Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (3) : 353 - 365
  • [7] Two-step secant type method with approximation of the inverse operator
    Shakhno, S. M.
    Yarmola, H. P.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2013, 5 (01) : 150 - 155
  • [8] Convergence by nondiscrete mathematical induction of a two step secant's method
    Amat, S.
    Bermudez, C.
    Busquier, S.
    Gretay, J.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (02) : 359 - 369
  • [9] Error analysis in parallel two-step phase-shifting method
    Anh-Hoang Phan
    Piao, Mei-lan
    Park, Jae-Hyeung
    Kim, Nam
    APPLIED OPTICS, 2013, 52 (11) : 2385 - 2393
  • [10] EXTENDED CONVERGENCE OF A TWO-STEP-SECANT-TYPE METHOD UNDER A RESTRICTED CONVERGENCE DOMAIN
    Argyros, Ioannis K.
    George, Santhosh
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (01): : 155 - 164