Weakly Supervised Object Localization and Detection: A Survey

被引:223
|
作者
Zhang, Dingwen [1 ]
Han, Junwei [1 ]
Cheng, Gong [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Brain & Artificial Intelligence Lab, Xian 710072, Shaanxi, Peoples R China
[2] Univ Calif Merced, EECS, Merced, CA 95344 USA
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Location awareness; Annotations; Training; Task analysis; Detectors; Supervised learning; Computer vision; Weakly supervised learning; object localization; object detection; TARGET DETECTION; DEEP; IMAGES; MODELS;
D O I
10.1109/TPAMI.2021.3074313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an emerging and challenging problem in the computer vision community, weakly supervised object localization and detection plays an important role for developing new generation computer vision systems and has received significant attention in the past decade. As methods have been proposed, a comprehensive survey of these topics is of great importance. In this work, we review (1) classic models, (2) approaches with feature representations from off-the-shelf deep networks, (3) approaches solely based on deep learning, and (4) publicly available datasets and standard evaluation metrics that are widely used in this field. We also discuss the key challenges in this field, development history of this field, advantages/disadvantages of the methods in each category, the relationships between methods in different categories, applications of the weakly supervised object localization and detection methods, and potential future directions to further promote the development of this research field.
引用
收藏
页码:5866 / 5885
页数:20
相关论文
共 50 条
  • [21] Adaptive attention augmentor for weakly supervised object localization
    Zhang, Longhao
    Yang, Huihua
    NEUROCOMPUTING, 2021, 454 : 474 - 482
  • [22] Foreground Activation Maps for Weakly Supervised Object Localization
    Meng, Meng
    Zhang, Tianzhu
    Tian, Qi
    Zhang, Yongdong
    Wu, Feng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3365 - 3375
  • [23] Token Masking Transformer for Weakly Supervised Object Localization
    Xu, Wenhao
    Wang, Changwei
    Xu, Rongtao
    Xu, Shibiao
    Meng, Weiliang
    Zhang, Man
    Zhang, Xiaopeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 2059 - 2069
  • [24] Weakly Supervised Object Localization with Latent Category Learning
    Wang, Chong
    Ren, Weiqiang
    Huang, Kaiqi
    Tan, Tieniu
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 431 - 445
  • [25] Rethinking erasing strategy on weakly supervised object localization
    Fan, Yuming
    Wei, Shikui
    Tan, Chuangchuang
    Chen, Xiaotong
    Yang, Dongming
    Zhao, Yao
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 135
  • [26] Aggregation of attention and erasing for weakly supervised object localization
    Koo, Bongyeong
    Choi, Han-Soo
    Kang, Myungjoo
    IMAGE AND VISION COMPUTING, 2023, 129
  • [27] Progressive Representation Adaptation for Weakly Supervised Object Localization
    Li, Dong
    Huang, Jia-Bin
    Li, Yali
    Wang, Shengjin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1424 - 1438
  • [28] Evaluating Weakly Supervised Object Localization Methods Right
    Choe, Junsuk
    Oh, Seong Joon
    Lee, Seungho
    Chun, Sanghyuk
    Akata, Zeynep
    Shim, Hyunjung
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3130 - 3139
  • [29] Feature disparity learning for weakly supervised object localization
    Li, Bingfeng
    Ruan, Haohao
    Li, Xinwei
    Wang, Keping
    IMAGE AND VISION COMPUTING, 2024, 145
  • [30] DANet: Divergent Activation for Weakly Supervised Object Localization
    Xue, Haolan
    Liu, Chang
    Wan, Fang
    Jiao, Jianbin
    Ji, Xiangyang
    Ye, Qixiang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6588 - 6597