Geometric Pretraining for Monocular Depth Estimation

被引:0
|
作者
Wang, Kaixuan [1 ]
Chen, Yao [2 ]
Guo, Hengkai [2 ]
Wen, Linfu [2 ]
Shen, Shaojie [1 ]
机构
[1] HKUST, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] ByteDance AI Lab, Beijing, Peoples R China
关键词
D O I
10.1109/icra40945.2020.9196847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
ImageNet-pretrained networks have been widely used in transfer learning for monocular depth estimation. These pretrained networks are trained with classification losses for which only semantic information is exploited while spatial information is ignored. However, both semantic and spatial information is important for per-pixel depth estimation. In this paper, we design a novel self-supervised geometric pretraining task that is tailored for monocular depth estimation using uncalibrated videos. The designed task decouples the structure information from input videos by a simple yet effective conditional autoencoder-decoder structure. Using almost unlimited videos from the internet, networks are pretrained to capture a variety of structures of the scene and can be easily transferred to depth estimation tasks using calibrated images. Extensive experiments are used to demonstrate that the proposed geometric-pretrained networks perform better than ImageNet-pretrained networks in terms of accuracy, few-shot learning and generalization ability. Using existing learning methods, geometric-transferred networks achieve new state-of-the-art results by a large margin. The pretrained networks will be open source soon(1).
引用
收藏
页码:4782 / 4788
页数:7
相关论文
共 50 条
  • [41] Depth-Relative Self Attention for Monocular Depth Estimation
    Shim, Kyuhong
    Kim, Jiyoung
    Lee, Gusang
    Shim, Byonghyo
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1396 - 1404
  • [42] Depth Estimation from a Monocular View of the Outdoors
    Kuo, Tien-Ying
    Lo, Yi-Chung
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2011, 57 (02) : 817 - 822
  • [43] Depth Estimation from a Monocular Outdoor Image
    Kuo, Tien-Ying
    Lo, Yi-Chung
    Lai, Yun-Yang
    IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE 2011), 2011, : 161 - 162
  • [44] Hierarchical Normalization for Robust Monocular Depth Estimation
    Zhang, Chi
    Yin, Wei
    Wang, Zhibin
    Yu, Gang
    Fu, Bin
    Shen, Chunhua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [45] Uncertainty Estimation for Efficient Monocular Depth Perception
    Du, Hao
    Cheng, Guoan
    Matsune, Ai
    Zhu, Qiang
    Zhan, Shu
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 804 - 808
  • [46] EdgeConv with Attention Module for Monocular Depth Estimation
    Lee, Minhyeok
    Hwang, Sangwon
    Park, Chaewon
    Lee, Sangyoun
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2364 - 2373
  • [47] Adaptive confidence thresholding for monocular depth estimation
    Choi, Hyesong
    Lee, Hunsang
    Kim, Sunkyung
    Kim, Sunok
    Kim, Seungryong
    Sohn, Kwanghoon
    Min, Dongbo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12788 - 12798
  • [48] NEREON - An Underwater Dataset for Monocular Depth Estimation
    Dionisio, Joao M. M.
    Pereira, Pedro N. A. A. S.
    Leite, Pedro N.
    Neves, Francisco S.
    Tavares, Joao Manuel R. S.
    Pinto, Andry M.
    OCEANS 2023 - LIMERICK, 2023,
  • [49] Depth Estimation using Monocular and Stereo Cues
    Saxena, Ashutosh
    Schulte, Jamie
    Ng, Andrew Y.
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2197 - 2203
  • [50] ROBUST LEARNING FOR DEEP MONOCULAR DEPTH ESTIMATION
    Irie, Go
    Kawanishi, Takahito
    Kashino, Kunio
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 964 - 968