Combining line search and trust-region methods for l1-minimization

被引:4
|
作者
Esmaeili, Hamid [1 ]
Rostami, Majid [1 ]
Kimiaei, Morteza [2 ]
机构
[1] Bu Ali Sina Univ, Dept Math, Hamadan, Iran
[2] Univ Vienna, Fac Math, Vienna, Austria
关键词
l(1)-minimization; compressed sensing; image deblurring; shrinkage operation; trust-region framework; nonmonotone line search; global convergence; THRESHOLDING ALGORITHM; OPTIMIZATION; MINIMIZATION; CONVERGENCE; SHRINKAGE;
D O I
10.1080/00207160.2017.1346241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study presents a new trust-region algorithm to solve the l(1-)minimization problem with applications to compressed sensing (CS) and image deblurring that will be augmented with a shrinkage operation to produce a new iteration whenever an approximated solution of the trust-region subproblem lies within one and iterate is successful, simultaneously. Otherwise, a nonmonotone Armijo-type line search strategy incorporates with shrinkage technique, which includes a convex combination of the maximum function value of some preceding iterates and the current function value. Therefore, the proposed approach takes advantages of both the effective trust-region and nonmonotone Armijo-type line search with a shrinkage operation. It is believed that selecting an appropriate shrinkage parameter according to a new procedure can improve the efficiency of our algorithm. The global convergence and the R-linear convergence rate of the proposed approach are proved for which numerical results are also reported.
引用
收藏
页码:1950 / 1972
页数:23
相关论文
共 50 条
  • [41] A nonmonotone trust-region line search method for large-scale unconstrained optimization
    Ahookhosh, Masoud
    Amini, Keyvan
    Peyghami, Mohammad Reza
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (01) : 478 - 487
  • [42] Globally convergent DC trust-region methods
    Hoai An Le Thi
    Van Ngai Huynh
    Tao Pham Dinh
    A. Ismael F. Vaz
    L. N. Vicente
    Journal of Global Optimization, 2014, 59 : 209 - 225
  • [43] A variant of trust-region methods for unconstrained optimization
    Wang, Fusheng
    Zhang, Kecun
    Wang, Chuanlong
    Wang, Li
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 297 - 307
  • [44] Trust-region superposition methods for protein alignment
    Andreani, R.
    Martinez, J. M.
    Martinez, L.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 690 - 710
  • [45] Globally convergent DC trust-region methods
    Hoai An Le Thi
    Van Ngai Huynh
    Tao Pham Dinh
    Vaz, A. Ismael F.
    Vicente, L. N.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (2-3) : 209 - 225
  • [46] A class of trust-region methods for parallel optimization
    Hough, PD
    Meza, JC
    SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) : 264 - 282
  • [47] Projected l1-Minimization for Compressed Sensing
    Khajehnejad, Amin
    Thill, Matthew
    Hassibi, Babak
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3617 - 3620
  • [48] Remote Sensing via l1-Minimization
    Huegel, Max
    Rauhut, Holger
    Strohmer, Thomas
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (01) : 115 - 150
  • [49] Surface Reconstruction via L1-Minimization
    Dobrev, Veselin
    Guermond, Jean-Luc
    Popov, Bojan
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2009, 5434 : 32 - 43
  • [50] Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning
    Rafati, Jacob
    Marcia, Roummel F.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 501 - 508