Recent advancements for improving the performance of triboelectric nanogenerator devices

被引:148
|
作者
Lone, Shahbaz Ahmad [1 ,6 ]
Lim, Kee Chin [1 ,4 ,6 ]
Kaswan, Kuldeep [1 ,6 ]
Chatterjee, Subhodeep [1 ,6 ]
Fan, Kai-Po [1 ,6 ]
Choi, Dongwhi [3 ]
Lee, Sangmin [2 ]
Zhang, Hulin [5 ]
Cheng, Jia [4 ]
Lin, Zong-Hong [1 ,6 ]
机构
[1] Natl Tsing Hua Univ, Inst Biomed Engn, Dept Power Mech Engn, Hsinchu 30013, Taiwan
[2] Chung Ang Univ, Sch Mech Engn, Seoul 06974, South Korea
[3] Kyung Hee Univ, Dept Mech Engn, Integrated Engn Program, Gyeonggi 17104, South Korea
[4] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China
[5] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan 030024, Peoples R China
[6] Natl Tsing Hua Univ, Frontier Res Ctr Fundamental & Appl Sci Matters, Hsinchu 30013, Taiwan
关键词
Triboelectric nanogenerator; Surface modification; Power management; Charge boosting; Implantable device; Wearable electronics; HARVESTING BIOMECHANICAL ENERGY; WATER-WAVE ENERGY; FRICTION LAYER; MECHANICAL ENERGY; OUTPUT POWER; SURFACE FUNCTIONALIZATION; ELECTROSTATIC-INDUCTION; CONVERSION EFFICIENCY; PLASMA TREATMENT; CHARGE-DENSITY;
D O I
10.1016/j.nanoen.2022.107318
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs) based energy harvesting is considered as a highly efficient approach for mechanical-to-electrical energy conversion based on contact electrification and electrostatic induction. Although triboelectrification is exhibited by almost all substances, chemists and material scientists have performed extensive investigations through theoretical analysis and practical applications to promote further development of TENGs. However, there are various parameters related to triboelectric materials and its output performance, which are required to be optimized for further improvement of efficiency and stability of TENGs. Especially, extensive research effort has been dedicated in engineering triboelectric materials to improve the output performance. However, the industrial application of TENG is still limited by low charging and power conversion efficiency. This review comprehensively discusses the recent progress in improvement of the output performance of TENGs based on different strategies and principles. Moreover, this review also suggests a holistic approach for the design and integration of charge boosting and power management with TENGs. The key impact of this review includes the discussion regarding physical and chemical modification based multidimensional engineering as well as different charge boosting, and power management strategies for the further advancement of TENGs. Moreover, the review also further introduces the applications of TENGs in emerging fields, such as wearable electronic devices and implantable medical devices. Finally, the challenges and future prospective are discussed, thereby guiding further research priorities.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview
    Huang, Bin
    Wang, Pengzhong
    Wang, Lu
    Yang, Shuai
    Wu, Dazhuan
    NANOTECHNOLOGY REVIEWS, 2020, 9 (01) : 716 - 735
  • [32] Sandwich as a triboelectric nanogenerator
    Jiao, Jingyi
    Lu, Qixin
    Wang, Zhonglin
    Qin, Yong
    Cao, Xia
    NANO ENERGY, 2021, 79
  • [33] Recent Advance of Triboelectric Nanogenerator-Based Electrical Stimulation in Healthcare
    Wang, Xiaoke
    Wang, Yiming
    Nie, Shijin
    Lin, Zhiming
    ELECTRONICS, 2023, 12 (21)
  • [34] A Wireless Triboelectric Nanogenerator
    Mallineni, Sai Sunil Kumar
    Dong, Yongchang
    Behlow, Herbert
    Rao, Apparao M.
    Podila, Ramakrishna
    ADVANCED ENERGY MATERIALS, 2018, 8 (10)
  • [35] Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator
    Roy, Sunanda
    Ko, Hyun-U
    Maji, Pradip K.
    Le Van Hai
    Kim, Jaehwan
    CHEMICAL ENGINEERING JOURNAL, 2020, 385
  • [36] Underwater triboelectric nanogenerator
    Wang, Siyuan
    Xu, Peng
    Liu, Jianhua
    Wang, Hao
    Si, Jicang
    Deng, Jian
    Xu, Minyi
    Wang, Zhong Lin
    NANO ENERGY, 2023, 118
  • [37] Triboelectric nanogenerator with asymmetric multilayer arc electrodes to improve performance
    Wang, Zhenjie
    Wang, Jianlong
    Zhao, Da
    Li, Hengyu
    Yu, Xin
    Zhang, Yu
    Cheng, Tinghai
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [38] Molecular Doped Biodegradable Triboelectric Nanogenerator with Optimal Output Performance
    Li, Cong
    Luo, Ruizeng
    Bai, Yuan
    Shao, Jiajia
    Ji, Jianying
    Wang, Engui
    Li, Zhe
    Meng, Hongyu
    Li, Zhou
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (29)
  • [39] High Performance Triboelectric Nanogenerator Based on Ultrastretchable Composite Electrode
    Jinah Kim
    Hyosik Park
    Giyong Kim
    Ju-Hyuck Lee
    Jinhyoung Park
    Sung Yeol Kim
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2023, 10 : 1543 - 1552
  • [40] Effect of humidity on the performance of polyvinyl chloride based triboelectric nanogenerator
    Ahmed, Rumana Farheen Sagade Muktar
    Mohan, Sankarshan Belur
    Ankanathappa, Sangamesh Madanahalli
    Ravindranath, Mohith Byadrahalli
    Sannathammegowda, Krishnaven
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 2468 - 2473