Interior point trajectories in semidefinite programming

被引:43
|
作者
Goldfarb, D [1 ]
Scheinberg, K
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA
关键词
semidefinite programming; central path; interior point methods;
D O I
10.1137/S105262349630009X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study interior point trajectories in semidefinite programming (SDP) including the central path of an SDP. This work was inspired by the seminal work of Megiddo on linear programming trajectories [Progress in Math. Programming: Interior-Point Algorithms and Related Methods, N. Megiddo, ed., Springer-Verlag, Berlin, 1989, pp. 131 - 158]. Under an assumption of primal and dual strict feasibility, we show that the primal and dual central paths exist and converge to the analytic centers of the optimal faces of, respectively, the primal and the dual problems. We consider a class of trajectories that are similar to the central path but can be constructed to pass through any given interior feasible or infeasible point, and study their convergence. Finally, we study the derivatives of these trajectories and their convergence.
引用
收藏
页码:871 / 886
页数:16
相关论文
共 50 条
  • [21] INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION
    ALIZADEH, F
    SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) : 13 - 51
  • [22] Interior-Point Algorithms for Semidefinite Programming Based on a Nonlinear Formulation
    Samuel Burer
    Renato D.C. Monteiro
    Yin Zhang
    Computational Optimization and Applications, 2002, 22 : 49 - 79
  • [23] An Interior Point Method for Semidefinite Programming based on New Kernel Functions
    Peyghami, M. Reza
    MODELLING OF ENGINEERING AND TECHNOLOGICAL PROBLEMS, 2009, 1146 : 441 - 455
  • [24] Sensitivity analysis in linear programming and semidefinite programming using interior-point methods
    E. Alper Yıldırım
    Michael Todd
    Mathematical Programming, 2001, 90 : 229 - 261
  • [25] Convergence Analysis of an Inexact Infeasible Interior Point Method for Semidefinite Programming
    Stefania Bellavia
    Sandra Pieraccini
    Computational Optimization and Applications, 2004, 29 : 289 - 313
  • [26] A primal-dual interior point method for nonlinear semidefinite programming
    Yamashita, Hiroshi
    Yabe, Hiroshi
    Harada, Kouhei
    MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) : 89 - 121
  • [27] Interior-point algorithm for semidefinite programming based on a logarithmic kernel function
    Benterki, Djamel
    Yassine, Adnan
    Zerari, Amina
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 3 - 15
  • [28] Analysis of some interior point continuous trajectories for convex programming
    Qian, Xun
    Liao, Li-Zhi
    Sun, Jie
    OPTIMIZATION, 2017, 66 (04) : 589 - 608
  • [29] A primal-dual interior point method for parametric semidefinite programming problems
    Wang Zhemin
    Zhou Kunping
    Huang Zhenghai
    Acta Mathematicae Applicatae Sinica, 2000, 16 (2) : 171 - 179
  • [30] A primal-dual regularized interior-point method for semidefinite programming
    Dehghani, A.
    Goffin, J. -L.
    Orban, D.
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 193 - 219