The Distinguishing Number and Distinguishing Chromatic Number for Posets

被引:1
|
作者
Collins, Karen L. [1 ]
Trenk, Ann N. [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
关键词
Distributive lattice; Distinguishing number; Distinguishing chromatic number; Birkhoff's theorem; MOTION;
D O I
10.1007/s11083-021-09583-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the concepts of the distinguishing number and the distinguishing chromatic number of a poset. For a distributive lattice L and its set Q(L) of join-irreducibles, we use classic lattice theory to show that any linear extension of Q(L) generates a distinguishing 2-coloring of L. We prove general upper bounds for the distinguishing chromatic number and particular upper bounds for the Boolean lattice and for divisibility lattices. In addition, we show that the distinguishing number of any twin-free Cohen-Macaulay planar lattice is at most 2.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [31] Vertex Distinguishing Equitable Total Chromatic Number of Join Graph
    Zhi-wen Wang
    Li-hong Yan
    Zhong-fu Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 433 - 438
  • [32] The distinguishing chromatic number of Cartesian products of two complete graphs
    Jerebic, Janja
    Klavzar, Sandi
    DISCRETE MATHEMATICS, 2010, 310 (12) : 1715 - 1720
  • [33] Distinguishing Number and Distinguishing Index of Certain Graphs
    Alikhani, Saeid
    Soltani, Samaneh
    FILOMAT, 2017, 31 (14) : 4393 - 4404
  • [34] The distinguishing number of the hypercube
    Bogstad, B
    Cowen, LJ
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 29 - 35
  • [35] On the Distinguishing Number of Functigraphs
    Fazil, Muhammad
    Murtaza, Muhammad
    Ullah, Zafar
    Ali, Usman
    Javaid, Imran
    SYMMETRY-BASEL, 2018, 10 (08):
  • [36] On the complexity of deciding whether the distinguishing chromatic number of a graph is at most two
    Eschen, Elaine M.
    Hoang, Chinh T.
    Sritharan, R.
    Stewart, Lorna
    DISCRETE MATHEMATICS, 2011, 311 (06) : 431 - 434
  • [37] The Adjacent Vertex Distinguishing Total Chromatic Number of Some Families of Snarks
    Chen, Qin
    ARS COMBINATORIA, 2017, 132 : 311 - 321
  • [39] Upper bounds on adjacent vertex distinguishing total chromatic number of graphs
    Hu, Xiaolan
    Zhang, Yunqing
    Miao, Zhengke
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 29 - 32
  • [40] On the Adjacent Vertex Strong Distinguishing Total chromatic number of Some Graphs
    Yan, Qiantai.
    Li, Wuzhuang.
    2013 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA), 2013, : 391 - 394