The Distinguishing Number and Distinguishing Chromatic Number for Posets

被引:1
|
作者
Collins, Karen L. [1 ]
Trenk, Ann N. [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
关键词
Distributive lattice; Distinguishing number; Distinguishing chromatic number; Birkhoff's theorem; MOTION;
D O I
10.1007/s11083-021-09583-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the concepts of the distinguishing number and the distinguishing chromatic number of a poset. For a distributive lattice L and its set Q(L) of join-irreducibles, we use classic lattice theory to show that any linear extension of Q(L) generates a distinguishing 2-coloring of L. We prove general upper bounds for the distinguishing chromatic number and particular upper bounds for the Boolean lattice and for divisibility lattices. In addition, we show that the distinguishing number of any twin-free Cohen-Macaulay planar lattice is at most 2.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [1] The Distinguishing Number and Distinguishing Chromatic Number for Posets
    Karen L. Collins
    Ann N. Trenk
    Order, 2022, 39 : 361 - 380
  • [2] The distinguishing chromatic number
    Collins, KL
    Trenk, AN
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [3] Equitable distinguishing chromatic number
    Amouzegar, Tayyebeh
    Khashyarmanesh, Kazem
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 304 - 315
  • [4] On the local distinguishing chromatic number
    Khormali, Omid
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 172 - 181
  • [5] Bounds on the Distinguishing Chromatic Number
    Collins, Karen L.
    Hovey, Mark
    Trenk, Ann N.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [6] Equitable distinguishing chromatic number
    Tayyebeh Amouzegar
    Kazem Khashyarmanesh
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 304 - 315
  • [7] Chromatic number is Ramsey distinguishing
    Savery, Michael
    JOURNAL OF GRAPH THEORY, 2022, 99 (01) : 152 - 161
  • [8] The Distinguishing Chromatic Number of Kneser Graphs
    Che, Zhongyuan
    Collins, Karen L.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [9] Graphs with large distinguishing chromatic number
    Cavers, Michael
    Seyffarth, Karen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [10] Distinguishing chromatic number of random Cayley graphs
    Balachandran, Niranjan
    Padinhatteeri, Sajith
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2447 - 2455