Fluorescent Single-Walled Carbon Nanotubes for Protein Detection

被引:65
|
作者
Hendler-Neumark, Adi [1 ]
Bisker, Gili [1 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, IL-6997801 Tel Aviv, Israel
关键词
molecular recognition; fluorescent nanoparticles; single-walled carbon nanotubes; protein detection; nanosensors; PHASE MOLECULAR RECOGNITION; QUANTUM DOTS; LIVE CELLS; OPTICAL-DETECTION; ANTIBODY; DNA; SENSOR; NANOSENSOR; NANOPARTICLES; NANOMATERIALS;
D O I
10.3390/s19245403
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nanosensors have a central role in recent approaches to molecular recognition in applications like imaging, drug delivery systems, and phototherapy. Fluorescent nanoparticles are particularly attractive for such tasks owing to their emission signal that can serve as optical reporter for location or environmental properties. Single-walled carbon nanotubes (SWCNTs) fluoresce in the near-infrared part of the spectrum, where biological samples are relatively transparent, and they do not photobleach or blink. These unique optical properties and their biocompatibility make SWCNTs attractive for a variety of biomedical applications. Here, we review recent advancements in protein recognition using SWCNTs functionalized with either natural recognition moieties or synthetic heteropolymers. We emphasize the benefits of the versatile applicability of the SWCNT sensors in different systems ranging from single-molecule level to in-vivo sensing in whole animal models. Finally, we discuss challenges, opportunities, and future perspectives.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Solvatochromism in single-walled carbon nanotubes
    Choi, Jong Hyun
    Strano, Michael S.
    APPLIED PHYSICS LETTERS, 2007, 90 (22)
  • [42] On the mechanics of single-walled carbon nanotubes
    Zhang, L. C.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (09) : 4223 - 4228
  • [43] Dissolution of single-walled carbon nanotubes
    Hamon, MA
    Chen, J
    Hu, H
    Chen, YS
    Itkis, ME
    Rao, AM
    Eklund, PC
    Haddon, RC
    ADVANCED MATERIALS, 1999, 11 (10) : 834 - +
  • [44] Coalescence of single-walled carbon nanotubes
    Terrones, M
    Terrones, H
    Banhart, F
    Charlier, JC
    Ajayan, PM
    SCIENCE, 2000, 288 (5469) : 1226 - 1229
  • [45] Localization in single-walled carbon nanotubes
    Fuhrer, M.S.
    Cohen, Marvin L.
    Zettl, A.
    Crespi, Vincent
    Solid State Communications, 1998, 109 (02): : 105 - 109
  • [46] Antioxidant single-walled carbon nanotubes
    Departments of Chemistry and Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005, United States
    不详
    J. Am. Chem. Soc., 2009, 11 (3934-3941):
  • [47] Conductivity of Single-Walled Carbon Nanotubes
    Gets, A. V.
    Krainov, V. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2016, 123 (06) : 1084 - 1089
  • [48] On diffusion of single-walled carbon nanotubes
    V. Ya. Rudyak
    D. S. Tretiakov
    Thermophysics and Aeromechanics, 2020, 27 : 847 - 855
  • [49] Purification of single-walled carbon nanotubes
    Yaya, A.
    Ewels, C. P.
    Wagner, Ph.
    Suarez-Martinez, I.
    Tekley, A. Gebramariam
    Jensen, L. Rosgaard
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2011, 54 (01):
  • [50] Separation of Metallic Single-Walled Carbon Nanotubes and Semiconducting Single-Walled Carbon Nanotubes by Agarose Gel Electrophoresis
    Zhu Sheng-Nan
    Zhang Jing
    Li Qing-Wen
    Li Hong-Bo
    Jin He-Hua
    Song Qi-Jun
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2012, 40 (12) : 1839 - 1844