Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning

被引:0
|
作者
Wan, Sheng [1 ,2 ]
Pan, Shirui [3 ]
Yang, Jian [1 ,2 ]
Gong, Chen [1 ,2 ,4 ]
机构
[1] Nanjing Univ Sci & Technol, PCA Lab, Key Lab Intelligent Percept & Syst High Dimens In, Minist Educ, Nanjing, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing, Peoples R China
[3] Monash Univ, Fac IT, Clayton, Vic, Australia
[4] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, i.e., the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, a novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semisupervised contrastive loss, improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the data features and input graph topology is extracted as supplementary supervision signals for SSL via using a graph generative loss related to the input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm compared with other state-of-the-art methods.
引用
收藏
页码:10049 / 10057
页数:9
相关论文
共 50 条
  • [41] Interpretable Graph-Based Semi-Supervised Learning via Flows
    Rustamov, Raif M.
    Klosowski, James T.
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3976 - 3983
  • [42] Graph-based semi-supervised learning and spectral kernel design
    Johnson, Ric
    Zhang, Tong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (01) : 275 - 288
  • [43] Spectral Graph-Based Semi-supervised Learning for Imbalanced Classes
    Zheng, Q.
    Skillicorn, D. B.
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 960 - 967
  • [44] SOME NEW DIRECTIONS IN GRAPH-BASED SEMI-SUPERVISED LEARNING
    Zhu, Xiaojin
    Goldberg, Andrew B.
    Khot, Tushar
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1504 - 1507
  • [45] VIDEO FACE RECOGNITION WITH GRAPH-BASED SEMI-SUPERVISED LEARNING
    Kokiopoulou, Effrosyni
    Frossard, Pascal
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1564 - +
  • [46] Time Series Analysis with Graph-based Semi-Supervised Learning
    Xu, Zhao
    Funaya, Koichi
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 1100 - 1105
  • [47] Safety-aware Graph-based Semi-Supervised Learning
    Gan, Haitao
    Li, Zhenhua
    Wu, Wei
    Luo, Zhizeng
    Huang, Rui
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 107 : 243 - 254
  • [48] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [49] Image colourisation using graph-based semi-supervised learning
    Liu, B. -B.
    Lu, Z. -M.
    IET IMAGE PROCESSING, 2009, 3 (03) : 115 - 120
  • [50] Matrix Completion for Graph-Based Deep Semi-Supervised Learning
    Taherkhani, Fariborz
    Kazemi, Hadi
    Nasrabadi, Nasser M.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5058 - 5065