Convergence and approximation of optimization problems

被引:4
|
作者
Alvarez-Mena, J
Hernández-Lerma, O
机构
[1] Inst Mexicano Petr, Programa Invest Matemat Aplicadas & Computac, Mexico City 07730, DF, Mexico
[2] Inst Politecn Nacl, CINVESTAV, Dept Matemat, Mexico City 07000, DF, Mexico
关键词
minimization problem; approximation; general capacity problem;
D O I
10.1137/S1052623402413938
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a general optimization problem (OP) and study the convergence and approximation of optimal values and optimal solutions to changes in the cost function and the set of feasible solutions. By a "general" OP we mean that the cost function and the constraints are defined on a Hausdorff topological space. First we obtain convergence results for a general OP, and then we present an application of these results on the approximation of the optimal value and the optimal solutions for the so-called general capacity problem in metric spaces.
引用
收藏
页码:527 / 539
页数:13
相关论文
共 50 条
  • [31] CONVERGENCE RATE FOR AN APPROXIMATION APPROACH TO H-INFINITY-NORM OPTIMIZATION PROBLEMS WITH AN APPLICATION TO CONTROLLER ORDER REDUCTION
    LIU, Y
    TEO, KL
    AUTOMATICA, 1992, 28 (03) : 617 - 621
  • [32] Asymptotic convergence of metaheuristics for multiobjective optimization problems
    Mario Villalobos-Arias
    Carlos A. Coello Coello
    Onésimo Hernández-Lerma
    Soft Computing, 2006, 10 : 1001 - 1005
  • [33] The Problem of Premature Convergence in Engineering Optimization Problems
    Ponomareva, K. A.
    Rozhnov, I. P.
    Kazakovtsev, L. A.
    MATHEMATICAL MODELING IN PHYSICAL SCIENCES, IC-MSQUARE 2023, 2024, 446 : 267 - 271
  • [34] CONVERGENCE OF EMPIRICAL ESTIMATES IN STOCHASTIC OPTIMIZATION PROBLEMS
    KASITSKAYA, EI
    KNOPOV, PS
    CYBERNETICS, 1991, 27 (02): : 297 - 303
  • [35] Convergence of optimal controls in some optimization problems
    Nikol'skii M.S.
    Computational Mathematics and Modeling, 2007, 18 (4) : 420 - 431
  • [37] Asymptotic convergence of metaheuristics for multiobjective optimization problems
    Villalobos-Arias, Mario
    Coello Coello, Carlos A.
    Hernandez-Lerma, Onesimo
    SOFT COMPUTING, 2006, 10 (11) : 1001 - 1005
  • [38] CONVERGENCE OF THE SOLUTION SETS FOR SET OPTIMIZATION PROBLEMS
    Ansari, Qamrul Hasan
    Hussain, Nasir
    Sharma, Pradeep Kumar
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (03): : 165 - 183
  • [39] A study of convergence and mapping in multiobjective optimization problems
    Ferguson, Scott
    Gurnani, Ashwin
    Donndelinger, Joseph
    Lewis, Kemper
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2005, Vol 3, Pts A and B, 2005, : 273 - 283
  • [40] On convergence of the uniform norms for Gaussian processes and linear approximation problems
    Hüsler, J
    Piterbarg, V
    Seleznjev, O
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1615 - 1653