Convergence and approximation of optimization problems

被引:4
|
作者
Alvarez-Mena, J
Hernández-Lerma, O
机构
[1] Inst Mexicano Petr, Programa Invest Matemat Aplicadas & Computac, Mexico City 07730, DF, Mexico
[2] Inst Politecn Nacl, CINVESTAV, Dept Matemat, Mexico City 07000, DF, Mexico
关键词
minimization problem; approximation; general capacity problem;
D O I
10.1137/S1052623402413938
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a general optimization problem (OP) and study the convergence and approximation of optimal values and optimal solutions to changes in the cost function and the set of feasible solutions. By a "general" OP we mean that the cost function and the constraints are defined on a Hausdorff topological space. First we obtain convergence results for a general OP, and then we present an application of these results on the approximation of the optimal value and the optimal solutions for the so-called general capacity problem in metric spaces.
引用
收藏
页码:527 / 539
页数:13
相关论文
共 50 条
  • [1] The modes of convergence in the approximation of fuzzy random optimization problems
    Liu, Yan-Kui
    Liu, Zhi-Qiang
    Gao, Jinwu
    SOFT COMPUTING, 2009, 13 (02) : 117 - 125
  • [2] The modes of convergence in the approximation of fuzzy random optimization problems
    Yan-Kui Liu
    Zhi-Qiang Liu
    Jinwu Gao
    Soft Computing, 2009, 13
  • [3] ON THE RATE OF CONVERGENCE FOR THE APPROXIMATION OF NONLINEAR PROBLEMS
    DESCLOUX, J
    RAPPAZ, J
    SCHOLZ, R
    MATHEMATICS OF COMPUTATION, 1985, 45 (171) : 51 - 64
  • [4] PROBLEMS OF CONVERGENCE OF METHOD OF WEAK APPROXIMATION
    NOVIKOV, VA
    SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (05) : 798 - 809
  • [5] CONVERGENCE OF CONSTRAINED OPTIMIZATION PROBLEMS
    MUGANDA, GC
    UTILITAS MATHEMATICA, 1990, 37 : 215 - 222
  • [6] APPROXIMATION AND CONVERGENCE OF NET METHOD IN ELLIPTICAL PROBLEMS
    DEMYANOV.YK
    DOKLADY AKADEMII NAUK SSSR, 1966, 170 (01): : 27 - &
  • [7] Convergence of kinetic approximation to nonlinear parabolic problems
    Naldi, G
    Pareschi, L
    Toscani, G
    GODUNOV METHODS: THEORY AND APPLICATIONS, 2001, : 655 - 662
  • [8] Parallel approximation of optimization problems
    Bovet, D.P.
    Clementi, A.
    Crescenzi, P.
    Silvestri, R.
    Lecture Notes in Computer Science, 1054
  • [9] Optimization problems with approximation schemes
    Malmstrom, A
    COMPUTER SCIENCE LOGIC, 1997, 1258 : 316 - 333
  • [10] An approximation theorem and generic convergence for equilibrium problems
    Qiu, Xiaoling
    Jia, Wensheng
    Peng, Dingtao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,