EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS

被引:4
|
作者
Shao, Jun [1 ,2 ]
Wang, Sheng [3 ]
机构
[1] China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Math Policy Res, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Asymptotic efficiency; bootstrap; combined regression estimators; separate regression estimators; unequal probability without replacement sampling; variance estimation; FINITE POPULATION; BOOTSTRAP;
D O I
10.5705/ss.2012.064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Model-assisted regression estimators are popular in sample surveys for making use of auxiliary information and improving the Horvitz-Thompson estimators of population totals. In the presence of strata and unequal probability sampling, however, there are several ways to form model-assisted regression estimators: regression within each stratum or regression by combining all strata, and a separate ratio adjustment for population size, or a combined ratio adjustment, or no adjustment. In the literature, there is no comprehensive theoretical comparison of these regression estimators. We compare the asymptotic efficiencies of six model-assisted regression estimators under two asymptotic settings. When there are a fixed number of strata with large stratum sample sizes, our result shows that one of the six regression estimators is a clear winner in terms of asymptotic efficiency. When there are a large number of strata with small stratum sample sizes, however, the story is different. Some comparisons in special cases are also made. Some simulation results are presented to examine finite sample performances of regression estimators and their variance estimators.
引用
收藏
页码:395 / 414
页数:20
相关论文
共 50 条
  • [41] Model-Assisted planning and quality determination
    Neugebauer, Reimund
    Noack, Steffen
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2000, 95 (1-2): : 28 - 32
  • [42] Model-assisted ranked survey sampling
    Bouza, C
    BIOMETRICAL JOURNAL, 2001, 43 (02) : 249 - 259
  • [43] A Comparison of Model-Assisted Estimators, With and Without Data-Driven Transformations of Auxiliary Variables, With Application to Forest Inventory
    Ekstrom, Magnus
    Nilsson, Mats
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2021, 4
  • [44] Model-Assisted Estimation in Inverse Sampling
    Sungsuwan, Sureeporn
    Suwattee, Prachoom
    CHIANG MAI JOURNAL OF SCIENCE, 2014, 41 (03): : 704 - 713
  • [45] Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation
    Stahl, Goran
    Saarela, Svetlana
    Schnell, Sebastian
    Holm, Soren
    Breidenbach, Johannes
    Healey, Sean P.
    Patterson, Paul L.
    Magnussen, Steen
    Naesset, Erik
    McRoberts, Ronald E.
    Gregoire, Timothy G.
    FOREST ECOSYSTEMS, 2016, 3
  • [46] Use of models in large-area forest surveys:comparing model-assisted,model-based and hybrid estimation
    G?ran St?hl
    Svetlana Saarela
    Sebastian Schnell
    S?ren Holm
    Johannes Breidenbach
    Sean P.Healey
    Paul L.Patterson
    Steen Magnussen
    Erik Naesset
    Ronald E.McRoberts
    Timothy G.Gregoire
    Forest Ecosystems, 2016, 3 (02) : 153 - 163
  • [47] Model-assisted calibration of non-probability sample survey data using adaptive LASSO
    Chen, Jack Kuang Tsung
    Valliant, Richard L.
    Elliott, Michael R.
    SURVEY METHODOLOGY, 2018, 44 (01) : 117 - 144
  • [48] Theoretical and empirical properties of model assisted decision-based regression estimators
    Shao, Jun
    Slud, Eric
    Cheng, Yang
    Wang, Sheng
    Hogue, Carma
    SURVEY METHODOLOGY, 2014, 40 (01) : 81 - 104
  • [49] EFFICIENCY OF 2-STAGE ESTIMATORS FOR PARAMETERS OF A MULTI-REGRESSION MODEL
    HUSSAIN, A
    REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1970, 38 (02): : 220 - &
  • [50] THE EFFICIENCY OF LEAST-SQUARES ESTIMATORS OF A SEEMINGLY UNRELATED REGRESSION-MODEL
    LIN, CT
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1991, 20 (04) : 919 - 925