Thin one-phase almost minimizers

被引:8
|
作者
De Silva, D. [1 ]
Savin, O. [2 ]
机构
[1] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
FLAT FREE-BOUNDARIES; REGULARITY;
D O I
10.1016/j.na.2019.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider almost minimizers to the thin-one phase energy functional and we prove optimal regularity of the solution and partial regularity of the free boundary. We recover the theory for energy minimizers developed in De Silva and Roquejoffre (2012) and De Silva and Savin (2015). Our methods are based on a noninfinitesimal notion of viscosity solutions we introduced in De Silva and Savin (2018). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] EFFECT OF ONE-PHASE PRESSURE ON PHASE EQUILIBRIUM PARAMETERS
    MARTYNOV, GA
    ZHURNAL FIZICHESKOI KHIMII, 1961, 35 (07): : 1518 - 1523
  • [32] Fast Biodiesel Production with One-Phase Reaction
    Park, Ji-Yeon
    Kim, Deog-Keun
    Wang, Zhong-Ming
    Lee, Jin-Suk
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2009, 154 (1-3) : 246 - 252
  • [33] TECHNOLOGY OF ONE-PHASE CULTURE SOLUTION WITH MICROELEMENTS
    BUROVA, MS
    GRISHAEV, IG
    FEDYUSHKIN, BF
    VOLODKOVITCH, VE
    MELNIKOVA, MA
    KHIMICHESKAYA PROMYSHLENNOST, 1991, (06): : 346 - 347
  • [34] SOME ASPECTS OF ONE-PHASE STEFAN PROBLEM
    CAFFARELLI, LA
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (01) : 73 - 77
  • [35] Mechanical properties of one-phase microemulsion system
    Zaid Ahmed Al-Anber
    Colloid Journal, 2013, 75 : 121 - 128
  • [36] Classical solutions for a one-phase osmosis model
    Lippoth, Friedrich
    Prokert, Georg
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (02) : 413 - 434
  • [37] One-Phase Temporal Fuzzy Utility Mining
    Hong, Tzung-Pei
    Lin, Cheng-Yu
    Huang, Wei-Ming
    Li, Shu-Min
    Wang, Shyue-Liang
    Lin, Jerry Chun-Wei
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [38] The one-phase bifurcation for the p-Laplacian
    Ali, Alaa Akram Haj
    Wang, Peiyong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (04) : 1899 - 1921
  • [39] Perturbative estimates for the one-phase Stefan problem
    D. De Silva
    N. Forcillo
    O. Savin
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [40] Perturbative estimates for the one-phase Stefan problem
    De Silva, D.
    Forcillo, N.
    Savin, O.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)