Thin one-phase almost minimizers

被引:8
|
作者
De Silva, D. [1 ]
Savin, O. [2 ]
机构
[1] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
FLAT FREE-BOUNDARIES; REGULARITY;
D O I
10.1016/j.na.2019.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider almost minimizers to the thin-one phase energy functional and we prove optimal regularity of the solution and partial regularity of the free boundary. We recover the theory for energy minimizers developed in De Silva and Roquejoffre (2012) and De Silva and Savin (2015). Our methods are based on a noninfinitesimal notion of viscosity solutions we introduced in De Silva and Savin (2018). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Almost minimizers of the one-phase free boundary problem
    De Silva, D.
    Savin, O.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (08) : 913 - 930
  • [2] Minimizers for the Thin One-Phase Free Boundary Problem
    Engelstein, Max
    Kauranen, Aapo
    Prats, Marti
    Sakellaris, Georgios
    Sire, Yannick
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (09) : 1971 - 2022
  • [3] Lipschitz Regularity of Almost Minimizers in One-Phase Problems Driven by the p-Laplace Operator
    Dipierro, Serena
    Errari, Fausto f
    Forcillo, Nicolo
    Valdinoci, Nrico
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (03) : 813 - 854
  • [4] Regularity for almost minimizers of a one-phase Bernoulli-type functional in Carnot groups of step two
    Ferrari, Fausto
    Forcillo, Nicolo
    Merlino, Enzo Maria
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (04)
  • [5] A Strong Maximum Principle for Minimizers of the One-Phase Bernoulli Problem
    Edelen, Nick
    Spolaor, L. uca
    Velichkov, Bozhidar
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (03) : 1061 - 1096
  • [6] Inhomogeneous global minimizers to the one-phase free boundary problem
    De Silva, Daniela
    Jerison, David
    Shahgholian, Henrik
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (06) : 1193 - 1216
  • [7] Stable cones in the thin one-phase problem
    Fernandez-Real, Xavier
    Ros-Oton, Xavier
    AMERICAN JOURNAL OF MATHEMATICS, 2024, 146 (03) : 631 - 685
  • [8] Almost minimizers for the thin obstacle problem
    Seongmin Jeon
    Arshak Petrosyan
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [9] Almost minimizers for the thin obstacle problem
    Jeon, Seongmin
    Petrosyan, Arshak
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)
  • [10] Regularity of Lipschitz free boundaries for the thin one-phase problem
    De Silva, Daniela
    Savin, Ovidiu
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (06) : 1293 - 1326