3D Autonomous Navigation of UAVs: An Energy-Efficient and Collision-Free Deep Reinforcement Learning Approach

被引:1
|
作者
Wang, Yubin [1 ]
Biswas, Karnika [1 ]
Zhang, Liwen [2 ]
Ghazzai, Hakim [1 ]
Massoud, Yehia [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Innovat Technol Labs, Thuwal, Saudi Arabia
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
关键词
Deep reinforcement learning; unmanned aerial vehicles; motion planning; autonomous navigation; energy efficiency;
D O I
10.1109/APCCAS55924.2022.10090255
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Energy consumption optimization is crucial for the navigation of Unmanned Aerial Vehicles (UAV), as they operate solely on battery power and have limited access to charging stations. In this paper, a novel deep reinforcement learning-based architecture has been proposed for planning energy-efficient and collision-free paths for a quadrotor UAV. The proposed method uses a unique combination of remaining flight distance and local knowledge of energy expenditure to compute an optimized route. An information graph is used to map the environment in three dimensions and obstacles inside a pre-determined neighbourhood of the UAV are removed to obtain a local as well as collision-free reachable space. Attention-based neural network forms the key element of the proposed reinforcement learning mechanism, that trains the UAV to autonomously generate the optimized route using partial knowledge of the environment, following the trajectories from which, the UAV is driven by the trajectory tracking controller.
引用
收藏
页码:404 / 408
页数:5
相关论文
共 50 条
  • [41] Energy-Efficient UAV Trajectory Design for Backscatter Communication: A Deep Reinforcement Learning Approach
    Nie, Yiwen
    Zhao, Junhui
    Liu, Jun
    Jiang, Jing
    Ding, Ruijin
    CHINA COMMUNICATIONS, 2020, 17 (10) : 129 - 141
  • [42] Secure and Energy-Efficient Communication for Internet of Drones Networks: A Deep Reinforcement Learning Approach
    Aboueleneen, Noor
    Alwarafy, Abdulmalik
    Abdallah, Mohamed
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 818 - 823
  • [43] Energy-Efficient UAV Trajectory Design for Backscatter Communication: A Deep Reinforcement Learning Approach
    Yiwen Nie
    Junhui Zhao
    Jun Liu
    Jing Jiang
    Ruijin Ding
    中国通信, 2020, 17 (10) : 129 - 141
  • [44] An Energy-Efficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning
    Shiri, Aidin
    Prakash, Bharat
    Mazumder, Arnab Neelim
    Waytowich, Nicholas R.
    Oates, Tim
    Mohsenin, Tinoosh
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [45] Energy-efficient VM scheduling based on deep reinforcement learning
    Wang, Bin
    Liu, Fagui
    Lin, Weiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 125 : 616 - 628
  • [46] An Energy-Efficient Trajectory Prediction for UAVs Using an Optimised 3D Improvised Protocol
    Gupta, Vinti
    Seth, Dambarudhar
    Yadav, Devendra Kumar
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (04) : 2963 - 2989
  • [47] Energy-Efficient IoT Sensor Calibration With Deep Reinforcement Learning
    Ashiquzzaman, Akm
    Lee, Hyunmin
    Um, Tai-Won
    Kim, Jinsul
    IEEE ACCESS, 2020, 8 : 97045 - 97055
  • [48] An Energy-Efficient Trajectory Prediction for UAVs Using an Optimised 3D Improvised Protocol
    Vinti Gupta
    Dambarudhar Seth
    Devendra Kumar Yadav
    Wireless Personal Communications, 2023, 132 : 2963 - 2989
  • [49] Deep Reinforcement Learning Based Efficient and Robust Navigation Method For Autonomous Applications
    Hemming, Nathan
    Menon, Vineetha
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 287 - 293
  • [50] Computationally-Efficient Distributed Algorithms of Navigation of Teams of Autonomous UAVs for 3D Coverage and Flocking
    Elmokadem, Taha
    Savkin, Andrey V.
    DRONES, 2021, 5 (04)