Planar domination graphs

被引:0
|
作者
Eschen, EM
Klostermeyer, WF
Sritharan, R
机构
[1] W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA
[2] Univ N Florida, Jacksonville, FL 32224 USA
[3] Univ Dayton, Dept Comp Sci, Dayton, OH 45469 USA
关键词
planar graph; weakly chordal graph; domination graph; recognition algorithm;
D O I
10.1016/S0012-365X(02)00684-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is a domination graph if each induced subgraph of G has a pair of vertices such that the open neighborhood of one is contained in the closed neighborhood of the other in the subgraph. No polynomial time algorithm or hardness result is known for the problem of deciding whether a graph is a domination graph. In this paper, it is shown that the class of planar domination graphs is equivalent to the class of planar weakly chordal graphs, and thus, can be recognized in polynomial time. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:129 / 137
页数:9
相关论文
共 50 条
  • [31] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [32] Unique irredundance, domination and independent domination in graphs
    Fischermann, M
    Volkmann, L
    Zverovich, I
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 190 - 200
  • [33] On Secure Domination in Graphs
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 786 - 790
  • [34] On the signed domination in graphs
    Matousek, J
    COMBINATORICA, 2000, 20 (01) : 103 - 108
  • [35] Domination in Circulant Graphs
    Rad, Nader Jafari
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 169 - 176
  • [36] Partial Domination in Graphs
    Angsuman Das
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1713 - 1718
  • [37] DOMINATION ON COCOMPARABILITY GRAPHS
    KRATSCH, D
    STEWART, L
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (03) : 400 - 417
  • [38] Domination index in graphs
    Nair, Kavya. R.
    Sunitha, M. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (10)
  • [39] Domination in signed graphs
    Jeyalakshmi, P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [40] Theory of Domination in Graphs
    Sinha, Deepa
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 903 - +