Controlled Deposition of Polymer Coatings on Cylindrical Photonic Devices

被引:9
|
作者
Velazquez-Benitez, Amado M. [1 ]
Reyes-Medrano, Moises [1 ]
Rodrigo Velez-Cordero, J. [1 ]
Hernandez-Cordero, Juan [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico
关键词
Optical devices; optical fibers; optical fiber sensors; photothermal effects; polymers; thermooptic effects; thin films; FIBER DEVICES; WAVE-GUIDES; LIQUID; SENSOR;
D O I
10.1109/JLT.2014.2377173
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a simple system for coating cylindrical devices for photonic related applications based on a wire coating method. Characterization of the system was done using two different polymeric materials, silicon-based PDMS and an acrylate-based polymer, obtaining different coating thicknesses upon varying the parameters of the process. Layers with controlled thickness ranging from hundreds of nanometers to 1 mm can be readily applied over devices with different diameters. We demonstrate the system capabilities for coating tapered optical fibers and glass capillaries. The fabrication of a tunable fused fiber coupler with a photoresponsive polymer layer is also demonstrated.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 50 条
  • [31] Structural aspects of the deposition of metal coatings on polymer films
    D. A. Panchuk
    E. A. Puklina
    A. V. Bol’shakova
    S. S. Abramchuk
    T. E. Grokhovskaya
    M. Yu. Yablokov
    A. B. Gil’man
    L. M. Yarysheva
    A. L. Volynskii
    N. F. Bakeev
    Polymer Science Series A, 2010, 52 : 801 - 805
  • [32] Inorganic-polymer composite coatings for biomedical devices
    Li H.-Y.
    Huang D.-N.
    Ren K.-F.
    Ji J.
    Smart Materials in Medicine, 2021, 2 : 1 - 14
  • [33] Initiated chemical vapor deposition of antimicrobial polymer coatings
    Martin, T. P.
    Kooi, S. E.
    Chang, S. H.
    Sedransk, K. L.
    Gleason, K. K.
    BIOMATERIALS, 2007, 28 (06) : 909 - 915
  • [34] Structural Aspects of the Deposition of Metal Coatings on Polymer Films
    Panchuk, D. A.
    Puklina, E. A.
    Bol'shakova, A. V.
    Abramchuk, S. S.
    Grokhovskaya, T. E.
    Yablokov, M. Yu.
    Gil'man, A. B.
    Yarysheva, L. M.
    Volynskii, A. L.
    Bakeev, N. F.
    POLYMER SCIENCE SERIES A, 2010, 52 (08) : 801 - 805
  • [35] Mesoporous nanocomposite coatings for photonic devices: sol-gel approach
    Islam, Shumaila
    Bidin, Noriah
    Riaz, Saira
    Suan, Lau Pik
    Naseem, Shahzad
    Sanagi, Mohd. Marsin
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (10):
  • [36] Space mapping technique for design optimization of antireflection coatings in photonic devices
    Feng, NN
    Zhou, GR
    Huang, WP
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003, 21 (01) : 281 - 285
  • [37] Functionalized polymer-based photonic devices for biosensing application
    Endo, Tatsuro
    ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES XIV, 2017, 10215
  • [38] Recent progress on polymer photonic materials and optical waveguide devices
    Zhao, Mingshan
    Han, Xiuyou
    Teng, Jie
    Wang, Linghua
    Zhang, Hongbo
    Wang, Jinyan
    Jian, Xigao
    Morthier, Geert
    2008 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: MICROELECTRONIC AND OPTOELECTRONIC DEVICES AND INTEGRATION, 2009, 7158
  • [39] New electrooptic polymer devices for microwave-photonic interactions
    Fetterman, HR
    Geary, K
    Kim, SK
    Poberezhskkly, IY
    Bortnik, BJ
    Yuan, W
    Han, J
    Seo, BJ
    Azfar, T
    Chang, DH
    Hung, YC
    Zhang, C
    Steier, WH
    PROCEEDINGS OF THE INTERNATIONAL 2003 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE - IMOC 2003, VOLS I AND II, 2003, : 437 - 442
  • [40] Fabrication of polymer based integrated photonic devices by maskless lithography
    Rahlves, M.
    ORGANIC PHOTONIC MATERIALS AND DEVICES XVIII, 2016, 9745