A High-Stability Diagnosis Model Based on a Multiscale Feature Fusion Convolutional Neural Network

被引:19
|
作者
Wang, Pengxin [1 ]
Song, Liuyang [1 ]
Guo, Xudong [1 ]
Wang, Huaqing [1 ]
Cui, Lingli [2 ]
机构
[1] Beijing Univ Chem Technol, Sch Mech Elect Engn, Beijing 100029, Peoples R China
[2] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); feature fusion; feature learning; intelligent diagnosis; rotating machines; BEARING FAULT-DIAGNOSIS;
D O I
10.1109/TIM.2021.3102745
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the diagnosis of rotating machines based on deep learning models has achieved great success. Many of these intelligent diagnosis models are assumed that training and test data are subject to independent identical distributions (IIDs). Unfortunately, such an assumption is generally invalid in practical applications due to noise disturbances and changes in workload. To address the above problem, this article presents a high-stability diagnosis model named the multiscale feature fusion convolutional neural network (MFF-CNN). MFF-CNN does not rely on tedious data preprocessing and target domain information. It is composed of multiscale dilated convolution, self-adaptive weighting, and the new form of maxout (NFM) activation. It extracts, modulates, and fuses the input samples' multiscale features so that the model focuses more on the health state difference rather than the noise disturbance and workload difference. Two diagnostic cases, including noisy cases and variable load cases, are used to verify the effectiveness of the present model. The results show that the present model has a strong health state identification capability and anti-interference capability for variable loads and noise disturbances.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Image Fusion and Stylization Processing Based on Multiscale Transformation and Convolutional Neural Network
    Xu, Qingzeng
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [32] Gear fault diagnosis based on small channel convolutional neural network under multiscale fusion attention mechanism
    Du, Xuejiao
    Liu, Bowen
    Gai, Jingbo
    Zhang, Yulin
    Shi, Xiangfeng
    Tian, Hailong
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (08) : 4147 - 4165
  • [33] Adaptive multiscale convolutional neural network model for chemical process fault diagnosis
    Qin, Ruoshi
    Zhao, Jinsong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 50 : 398 - 411
  • [34] Adaptive multiscale convolutional neural network model for chemical process fault diagnosis
    Ruoshi Qin
    Jinsong Zhao
    ChineseJournalofChemicalEngineering, 2022, 50 (10) : 398 - 411
  • [35] A Multiscale Fusion Convolutional Neural Network for Plant Leaf Recognition
    Hu, Jing
    Chen, Zhibo
    Yang, Meng
    Zhang, Rongguo
    Cui, Yaji
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 853 - 857
  • [36] Fan Fault Diagnosis Based on Lightweight Multiscale Multiattention Feature Fusion Network
    Fan, Zhixia
    Xu, Xiaogang
    Wang, Ruijun
    Wang, Huijie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (07) : 4542 - 4554
  • [37] Convolutional Neural Network-Based Multiscale Feature Selection and Evaluation in Image Segmentation
    Cao, Di
    Cao, Jian-Nong
    Deng, Liang
    Lou, Li-Ping
    IEEE ACCESS, 2024, 12 : 68003 - 68014
  • [38] Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion
    Yu, Di
    Fu, Haiyue
    Song, Yanchen
    Xie, Wenjian
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [39] Aircraft Classification Based on PCA and Feature Fusion Techniques in Convolutional Neural Network
    Azam, Faisal
    Rizvi, Akash
    Khan, Wazir Zada
    Aalsalem, Mohammed Y.
    Yu, Heejung
    Bin Zikria, Yousaf
    IEEE ACCESS, 2021, 9 : 161683 - 161694
  • [40] Feature-based and Convolutional Neural Network Fusion Method for Visual Relocalization
    Wang, Li
    Li, Ruifeng
    Sun, Jingwen
    Seah, Hock Soon
    Quah, Chee Kwang
    Zhao, Lijun
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 1489 - 1495