Solving Nonconvex Optimization Problems in Systems and Control: A Polynomial B-spline Approach

被引:2
|
作者
Gawali, Deepak [1 ,3 ]
Zidna, Ahmed [2 ]
Nataraj, Paluri S. V. [3 ]
机构
[1] Vidyavardhinis Coll Engn & Technol, Vasai, Maharashtra, India
[2] Univ Lorraine, Theoret & Appl Comp Sci Lab, Nancy, France
[3] Indian Inst Technol, Syst & Control Engn, Bombay, Maharashtra, India
关键词
Polynomial B-spline; Global optimization; Polynomial optimization; Constrained optimization; GLOBAL OPTIMIZATION; RANGE;
D O I
10.1007/978-3-319-18161-5_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many problems in systems and control engineering can be formulated as constrained optimization problems with multivariate polynomial objective functions. We propose algorithms based on polynomial B-spline form for constrained global optimization of multivariate polynomial functions. The proposed algorithms are based on a branch-and-bound framework. We tested the proposed basic constrained global optimization algorithms by considering three test problems from systems and control. The obtained results agree with those reported in literature.
引用
收藏
页码:467 / 478
页数:12
相关论文
共 50 条
  • [21] Trigonometric polynomial B-spline with shape parameter
    Wang, WT
    Wang, GZ
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (11) : 1023 - 1026
  • [22] B-Spline Output Feedback Control for Nonlinear Systems
    Leu, Yih-Guang
    Lin, Jian-You
    Chen, Chun-Yao
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 2, PROCEEDINGS, 2009, 5552 : 1116 - 1122
  • [23] Uniform trigonometric polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    SCIENCE IN CHINA SERIES F, 2002, 45 (05): : 335 - 343
  • [24] Uniform trigonometric polynomial B-spline curves
    吕勇刚
    汪国昭
    杨勋年
    Science in China(Series F:Information Sciences), 2002, (05) : 335 - 343
  • [25] A Quadratic B-Spline Galerkin Approach for Solving a Coupled KdV Equation
    Kutluay, Selcuk
    Ucar, Yusuf
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (01) : 103 - 121
  • [26] Solving nonconvex SDP problems of structural optimization with stability control
    Kocvara, M
    Stingl, M
    OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (05): : 595 - 609
  • [27] B-spline modal method: A polynomial approach compared to the Fourier modal method
    Walz, Michael
    Zebrowski, Thomas
    Kuechenmeister, Jens
    Busch, Kurt
    OPTICS EXPRESS, 2013, 21 (12): : 14683 - 14697
  • [28] Topology optimization of elastic contact problems using B-spline parameterization
    Li, Jiajia
    Zhang, Weihong
    Niu, Cao
    Gao, Tong
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (04) : 1669 - 1686
  • [29] Topology optimization of elastic contact problems using B-spline parameterization
    Jiajia Li
    Weihong Zhang
    Cao Niu
    Tong Gao
    Structural and Multidisciplinary Optimization, 2021, 63 : 1669 - 1686
  • [30] Numerical solution of singular boundary value problems via Chebyshev polynomial and B-spline
    Kadalbajoo, MK
    Aggarwal, VK
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (03) : 851 - 863