Elasto-inertial particle focusing in 3D-printed microchannels with unconventional cross sections

被引:36
|
作者
Tang, Wenlai [1 ,2 ]
Fan, Ning [1 ]
Yang, Jiquan [1 ,2 ]
Li, Zongan [1 ]
Zhu, Liya [1 ]
Jiang, Di [3 ]
Shi, Jianping [1 ]
Xiang, Nan [4 ]
机构
[1] Nanjing Normal Univ, Sch Elect & Automat Engn, Jiangsu Key Lab 3D Printing Equipment & Mfg, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Inst Intelligent High End Equipment Ind C, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Forestry Univ, Sch Mech & Elect Engn, Nanjing, Jiangsu, Peoples R China
[4] Southeast Univ, Sch Mech Engn, Jiangsu Key Lab Design & Manufacture Micronano Bi, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Elasto-inertial focusing; 3D printing; Particle migration; Unconventional cross section; Microfluidics; MICROFLUIDIC DEVICE; TUMOR-CELLS; SEPARATION; FLOW; MIGRATION;
D O I
10.1007/s10404-019-2205-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, elasto-inertial particle focusing in 3D-printed microchannels with unconventional cross sections was studied. A novel 3D-printed mold-removal method was proposed to fabricate the microchannels. By modifying the orifice shape of the extrusion nozzle, the microchannel molds with arbitrary cross sections could be printed using an easily accessible fused deposition modeling (FDM) printer. After the routine PDMS casting procedure, the channel molds were dissolved to produce all-PDMS microfluidic chips, thereby eliminating the complex bonding process. The mechanisms of elasto-inertial focusing in the semielliptical and triangular microchannels were explored by comparing the particle migrations in 0.3wt% HA solution and PBS solution, and the effects of flow rate on particle focusing position and focusing width were also investigated. We found that the single-line particle focusing in the triangular microchannel was more stable and closer to the channel bottom than that in the semielliptical microchannel, which is of great value to improve the detection sensitivity of microfluidic impedance cytometer with coplanar electrodes fabricated on the channel bottom.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Three-dimensional particle focusing under viscoelastic flow based on dean-flow-coupled elasto-inertial effects
    Yuan, D.
    Zhang, J.
    Yan, S.
    Pan, C.
    Alici, G.
    Nguyen, N. T.
    Li, W. H.
    SEVENTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2016, 9903
  • [32] Enhancing circulating tumor cells separation with integrated spiral and U-shaped cross-section microchannels using elasto-inertial microfluidics
    Nouri, Moein
    Ebrahimi, Sina
    Bahramian, Amirsaman
    Dehghan, Amin
    Pishbin, Esmail
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 382
  • [33] Particle focusing by 3D inertial microfluidics
    Petra Paiè
    Francesca Bragheri
    Dino Di Carlo
    Roberto Osellame
    Microsystems & Nanoengineering, 3
  • [34] Pool boiling performance of 3D-printed reentrant microchannels structures
    Pi, Guang
    Deng, Daxiang
    Chen, Liang
    Xu, Xinhai
    Zhao, Chenyang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 156
  • [35] Particle focusing by 3D inertial microfluidics
    Paie, Petra
    Bragheri, Francesca
    Di Carlo, Dino
    Osellame, Roberto
    MICROSYSTEMS & NANOENGINEERING, 2017, 3
  • [36] A dimensional comparison between embedded 3D-printed and silicon microchannels
    O'Connor, J.
    Punch, J.
    Jeffers, N.
    Stafford, J.
    EUROTHERM SEMINAR 102: THERMAL MANAGEMENT OF ELECTRONIC SYSTEMS, 2014, 525
  • [37] 3D-Printed Hydrodynamic Focusing Lab-on-a-Chip Device for Impedance Flow Particle Analysis
    Desagani, Dayananda
    Kleiman, Shani
    Zagardan, Teddy
    Ben-Yoav, Hadar
    CHEMOSENSORS, 2023, 11 (05)
  • [38] Electroosmotic flow in fused deposition modeling (FDM) 3D-printed microchannels
    Barbosa, Fabio Henrique Barros
    Quero, Reverson Fernandes
    Rocha, Kionnys Novaes
    Costa, Samuel Carvalho
    de Jesus, Dosil Pereira
    ELECTROPHORESIS, 2023, 44 (5-6) : 558 - 562
  • [39] Evaluation of 3D-printed molds for fabrication of non-planar microchannels
    Parthiban, Pravien
    Vijayan, Sindhu
    Doyle, Patrick S.
    Hashimoto, Michinao
    BIOMICROFLUIDICS, 2021, 15 (02)
  • [40] Complex 3D-Printed Microchannels within Cell-Degradable Hydrogels
    Song, Kwang Hoon
    Highley, Christopher B.
    Rouff, Andrew
    Burdick, Jason A.
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (31)