Feature selection for position estimation using an omnidirectional camera

被引:15
|
作者
Do, Huan N. [1 ]
Jadaliha, Mahdi [1 ]
Choi, Jongeun [1 ,2 ]
Lim, Chae Young [3 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Vision-based localization; Appearance-based localization; Feature selection; Gaussian process regression; Hyperparameter estimation; Empirical Bayes methods; ROBOT NAVIGATION; VISION; LOCALIZATION; INFORMATION;
D O I
10.1016/j.imavis.2015.04.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers visual feature selection to implement position estimation using an omnidirectional camera. The localization is based on a maximum likelihood estimation (MLE) with a map from optimally selected visual features using Gaussian process (GP) regression. In particular, the collection of selected features over a surveillance region is modeled by a multivariate GP with unknown hyperparameters. The hyperparameters are identified through the learning process by an MLE, which are used for prediction in an empirical Bayes fashion. To select features, we apply a backward sequential elimination technique in order to improve the quality of the position estimation with compressed features for efficient localization. The excellent results of the proposed algorithm are illustrated by the experimental studies with different visual features under both indoor and outdoor real-world scenarios. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Estimation of Robot Position and Orientation Using a Stationary Fisheye Camera
    Delibasis, Konstantinos K.
    Plagianakos, Vassilis P.
    Maglogiannis, Ilias
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2015, 24 (06)
  • [32] Viewer's eye position estimation using single camera
    Ju, Seong-Hwan
    Kim, Myeong-Do
    Park, Myung-Soo
    Kim, Kil-Tae
    Park, Joon-Ha
    Lim, Kyoung-Moon
    Digest of Technical Papers - SID International Symposium, 2013, 44 (01): : 671 - 674
  • [33] Line-based Camera Movement Estimation by Using Parallel Lines in Omnidirectional Video
    Kawanishi, Ryosuke
    Yamashita, Atsushi
    Kaneko, Toru
    Asama, Hajime
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3573 - 3579
  • [34] Parametric ego-motion estimation for vehicle surround analysis using an omnidirectional camera
    Tarak Gandhi
    Mohan Trivedi
    Machine Vision and Applications, 2005, 16 : 85 - 95
  • [35] Parametric ego-motion estimation for vehicle surround analysis using an omnidirectional camera
    Gandhi, T
    Trivedi, M
    MACHINE VISION AND APPLICATIONS, 2005, 16 (02) : 85 - 95
  • [36] Feature selection in source camera identification
    Choi, Kai San
    Lam, Edmund Y.
    Wong, Kenneth K. Y.
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3176 - +
  • [37] Monocular Ego-motion Estimation with a Compact Omnidirectional Camera
    Stuerzl, Wolfgang
    Burschka, Darius
    Suppa, Michael
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 822 - 828
  • [38] Safe Robot Navigation Using an Omnidirectional Camera
    Pudics, Gyula
    Szabo-Resch, Miklos Zsolt
    Vamossy, Zoltan
    2015 16TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2015, : 227 - 231
  • [39] Image-Based Ego-Motion Estimation Using On-Vehicle Omnidirectional Camera
    Matsuhisa, Ryota
    Ono, Shintaro
    Kawasaki, Hiroshi
    Banno, Atsuhiko
    Ikeuchi, Katsushi
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2010, 8 (02) : 106 - 117
  • [40] Image-Based Ego-Motion Estimation Using On-Vehicle Omnidirectional Camera
    Ryota Matsuhisa
    Shintaro Ono
    Hiroshi Kawasaki
    Atsuhiko Banno
    Katsushi Ikeuchi
    International Journal of Intelligent Transportation Systems Research, 2010, 8 (2) : 106 - 117