Ultrasound enhanced plasma surface modification at atmospheric pressure

被引:17
|
作者
Kusano, Y. [1 ]
Singh, S. V. [1 ]
Norrman, K. [1 ]
Drews, J. [1 ]
Leipold, F. [1 ]
Rozlosnik, N. [2 ]
Bardenshtein, A. [3 ]
Krebs, N. [3 ]
机构
[1] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark
[2] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[3] FORCE Technol, DK-2605 Brondby, Denmark
关键词
Atmospheric pressure plasma; Surface treatment; Adhesion; Ultrasound; Polyester; FIBER-REINFORCED POLYESTER; ADHESION IMPROVEMENT; COMPOSITES; DISCHARGE; TORCH;
D O I
10.1179/1743294411Y.0000000084
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above similar to 140 dB can reduce the thickness of a boundary gas layer between the plasma and the material surface, and thus, many reactive species generated in the plasma can reach the surface before they are inactivated and can be efficiently utilised for surface modification. In the present work, glass fibre reinforced polyester plates were treated using a dielectric barrier discharge and a gliding arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of similar to 150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved. The ultrasonic irradiation during the plasma treatment consistently enhanced the treatment efficiency. The principal effect of ultrasonic irradiation can be attributed to enhancing surface oxidation during plasma treatment. In addition, ultrasonic irradiation can suppress arcing, and the uniformity of the treatment can be improved.
引用
收藏
页码:453 / 457
页数:5
相关论文
共 50 条
  • [41] Two Atmospheric-pressure Plasma Sources for Polymer Surface Modification
    Shujun Yang
    Hong Yin
    Plasma Chemistry and Plasma Processing, 2007, 27 : 23 - 33
  • [42] Enhanced photoelectrochemical response of 1D TiO2 by atmospheric pressure plasma surface modification
    Satale, Vinayak Vitthal
    Ganesh, Vattikondala
    Dey, Avishek
    Krishnamurthy, Satheesh
    Bhat, S. Venkataprasad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (24) : 12715 - 12724
  • [43] GLOW PLASMA TREATMENT AT ATMOSPHERIC-PRESSURE FOR SURFACE MODIFICATION AND FILM DEPOSITION
    KANAZAWA, S
    KOGOMA, M
    OKAZAKI, S
    MORIWAKI, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1989, 37-8 : 842 - 845
  • [44] Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application
    Noh, Joo Hyon
    Baik, Hong Koo
    Noh, Insup
    Park, Jong-Chul
    Lee, In-Seop
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (9-11): : 5097 - 5101
  • [45] Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet
    Cheng, Cheng
    Zhang Liye
    Zhan, Ru-Juan
    SURFACE & COATINGS TECHNOLOGY, 2006, 200 (24): : 6659 - 6665
  • [46] Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure
    Erofeev, M. V.
    Shulepov, M. A.
    Ivanov, Yu. F.
    Oskomov, K. V.
    Tarasenko, V. F.
    RUSSIAN PHYSICS JOURNAL, 2016, 58 (11) : 1557 - 1562
  • [47] Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding
    Akram, M.
    Jansen, K. M. B.
    Ernst, L. J.
    Bhowmik, S.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2011, 31 (07) : 598 - 604
  • [48] Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification
    Chen, Guangliang
    Chen, Shihua
    Zhou, Mingyan
    Feng, Wenran
    Gu, Weichao
    Yang, Size
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (24) : 5211 - 5215
  • [49] Experimental research on surface modification of polytetrafluoroethylene by Ar atmospheric pressure plasma jet
    Hao, Zhiyuan
    Ji, Shengchang
    Song, Ying
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2014, 48 (04): : 59 - 67
  • [50] Surface modification of aramid yarn by atmospheric pressure plasma: Reinforcement and floating properties
    Sohbatzadeh, F.
    Shakerinasab, E.
    Mirzanejhad, S.
    POLYMER TESTING, 2023, 117