Study of the first-order phase transition in the classical and quantum random field Heisenberg model on a simple cubic lattice

被引:9
|
作者
de Sousa, J. Ricardo [2 ,3 ]
de Albuquerque, Douglas F. [4 ]
de Arruda, Alberto S. [1 ]
机构
[1] Univ Fed Mato Grosso, Inst Fis, BR-78060900 Cuiaba, MT, Brazil
[2] Univ Fed Amazonas, Dept Fis, BR-69077000 Manaus, AM, Brazil
[3] Natl Inst Sci & Technol Complex Syst, BR-69077000 Manaus, AM, Brazil
[4] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
关键词
Random field; Heisenberg model; Effective-field theory; ISING THIN-FILM; TRICRITICAL BEHAVIOR; MAGNETIC-PROPERTIES; DIAGRAMS; TEMPERATURE; FERROMAGNET; METAMAGNET;
D O I
10.1016/j.physa.2012.01.049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase diagram of the Heisenberg ferromagnetic model in the presence of a magnetic random field (we have used bimodal distribution) of spin S = 1/2 (quantum case) and S = infinity (classical case) on a simple cubic lattice is studied within the framework of the effective-field theory in finite cluster (we have chosen N = 2 spins). Integrating out the part of order parameter (equation of state), we obtained an effective Landau expansion for the free energy written in terms of the order parameter Psi (m). Using the Maxwell construction we have obtained the phase diagram in the T H plane for all intervals of the field. The first-order transition temperature is calculated by the discontinuity of the magnetization at T-c*(H), on the other hand in the continuous transition the magnetization is null at T = T-c(H). At null temperature (T = 0) we have found the coexistence field H-c = 3.23 J that is independent of spin value. The transition temperature T-c(H) for the classical case (S = infinity), in the T - H plane, is larger than the quantum case (S = 1/2). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3361 / 3365
页数:5
相关论文
共 50 条
  • [31] First-Order Rhombohedral-to-Cubic Phase Transition in Photoexcited GeTe
    Furci, Matteo
    Marini, Giovanni
    Calandra, Matteo
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [32] Order, chaos and quasi symmetries in a first-order quantum phase transition
    Leviatan, A.
    Macek, M.
    SYMMETRIES IN SCIENCE XVI, 2014, 538
  • [33] Evolution of order and chaos across a first-order quantum phase transition
    Leviatan, A.
    Macek, M.
    PHYSICS LETTERS B, 2012, 714 (01) : 110 - 114
  • [34] First-Order Quantum Phase Transition of Excitons in Quantum Hall Bilayers
    Karmakar, Biswajit
    Pellegrini, Vittorio
    Pinczuk, Aron
    Pfeiffer, Loren N.
    West, Ken W.
    PHYSICAL REVIEW LETTERS, 2009, 102 (03)
  • [35] A Monte Carlo study of the first-order transition in a Heisenberg FCC antiferromagnet
    M. V. Gvozdikova
    M. E. Zhitomirsky
    Journal of Experimental and Theoretical Physics Letters, 2005, 81 : 236 - 240
  • [36] A Monte Carlo study of the first-order transition in a Heisenberg FCC antiferromagnet
    Gvozdikova, MV
    Zhitomirsky, ME
    JETP LETTERS, 2005, 81 (05) : 236 - 240
  • [37] A MODIFIED SPHERICAL MODEL OF A FIRST-ORDER PHASE TRANSITION
    LANGER, JS
    PHYSICAL REVIEW, 1965, 137 (5A): : 1531 - &
  • [38] MODEL FOR FIRST-ORDER PHASE-TRANSITION IN MNBI
    STREIFER, W
    HUBERMAN, BA
    APPLIED PHYSICS LETTERS, 1974, 24 (03) : 147 - 148
  • [39] Phase diagram of the classical Heisenberg model in a trimodal random field distribution
    Santos-Filho, A.
    de Albuquerque, D. F.
    Santos-Filho, J. B.
    Araujo Batista, T. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 461 : 133 - 139
  • [40] Strongly first-order electroweak phase transition and classical scale invariance
    Farzinnia, Arsham
    Ren, Jing
    PHYSICAL REVIEW D, 2014, 90 (07):