Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients

被引:14
|
作者
Si, Xin [1 ]
Ye, Xia [2 ,3 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
[2] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
关键词
Incompressible MHD; Density-dependent viscosity; Density-dependent resistivity; Global well-posedness; NAVIER-STOKES EQUATIONS; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMICS; DISSIPATION; EXISTENCE; VACUUM; SYSTEM;
D O I
10.1007/s00033-016-0722-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns an initial-boundary value problem of the inhomogeneous incompressible MHD equations in a smooth bounded domain. The viscosity and resistivity coefficients are density-dependent. The global well-posedness of strong solutions is established, provided the initial norms of velocity and magnetic field are suitably small in some sense, or the lower bound of the transport coefficients are large enough. More importantly, there is not any smallness condition on the density and its gradient.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Global well-posedness and optimal decay for incompressible MHD equations with fractional dissipation and magnetic diffusion
    Jin, Meilin
    Jiu, Quansen
    Xie, Yaowei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [42] Global well-posedness of the free-surface incompressible ideal MHD equations with velocity damping
    Liu, Mengmeng
    Jiang, Han
    Zhang, Yajie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06):
  • [43] Global Well-Posedness and Exponential Decay of 2D Nonhomogeneous Navier–Stokes and Magnetohydrodynamic Equations with Density-Dependent Viscosity and Vacuum
    Xin Zhong
    The Journal of Geometric Analysis, 2022, 32
  • [44] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1865 - 1884
  • [45] Global Well-Posedness for Certain Density-Dependent Modified-Leray-α Models
    Chen, Wenying
    Fan, Jishan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [46] Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity
    Hammadi Abidi
    Ping Zhang
    Science China Mathematics, 2015, 58 : 1129 - 1150
  • [47] Global well-posedness for 2D nonhomogeneous asymmetric fluids with magnetic field and density-dependent viscosity
    Ling Zhou
    Chun-Lei Tang
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [48] Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity
    ABIDI Hammadi
    ZHANG Ping
    Science China(Mathematics), 2015, 58 (06) : 1129 - 1150
  • [49] Global well-posedness for 2D nonhomogeneous asymmetric fluids with magnetic field and density-dependent viscosity
    Zhou, Ling
    Tang, Chun-Lei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [50] Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity
    Abidi, Hammadi
    Zhang Ping
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) : 1129 - 1150