Topology-function conservation in protein-protein interaction networks

被引:51
|
作者
Davis, Darren [1 ]
Yaveroglu, Omer Nebil [1 ,2 ]
Malod-Dognin, Noel [2 ]
Stojmirovic, Aleksandar [3 ,4 ]
Przulj, Natasa [2 ]
机构
[1] Univ Calif Irvine, Calif Inst Telecommun & Technol Calit2, Irvine, CA USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
[3] Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA
[4] Janssen Res & Dev LLC, Spring House, PA USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
MEDIATOR SUBUNIT; RNA-POLYMERASE; PREDICTION;
D O I
10.1093/bioinformatics/btv026
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. Results: To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms.
引用
收藏
页码:1632 / 1639
页数:8
相关论文
共 50 条
  • [31] Unified Alignment of Protein-Protein Interaction Networks
    Malod-Dognin, Noel
    Ban, Kristina
    Przulj, Natasa
    SCIENTIFIC REPORTS, 2017, 7
  • [32] Hub Promiscuity in Protein-Protein Interaction Networks
    Patil, Ashwini
    Kinoshita, Kengo
    Nakamura, Haruki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2010, 11 (04) : 1930 - 1943
  • [33] Global Map of SUMO Function Revealed by Protein-Protein Interaction and Genetic Networks
    Makhnevych, Taras
    Sydorskyy, Yaroslav
    Xin, Xiaofeng
    Srikumar, Tharan
    Vizeacoumar, Franco J.
    Jerarn, Stanley M.
    Li, Zhijian
    Bahr, Sondra
    Andrews, Brenda J.
    Boone, Charles
    Raught, Brian
    MOLECULAR CELL, 2009, 33 (01) : 124 - 135
  • [34] Evolution of protein-protein interaction networks in yeast
    Schoenrock, Andrew
    Burnside, Daniel
    Moteshareie, Houman
    Pitre, Sylvain
    Hooshyar, Mohsen
    Green, James R.
    Golshani, Ashkan
    Dehne, Frank
    Wong, Alex
    PLOS ONE, 2017, 12 (03):
  • [35] Unified Alignment of Protein-Protein Interaction Networks
    Noël Malod-Dognin
    Kristina Ban
    Nataša Pržulj
    Scientific Reports, 7
  • [36] Communities Analysis in Protein-protein Interaction Networks
    Li, Kan
    Pang, Yin
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [37] AligNet: alignment of protein-protein interaction networks
    Adrià Alcalá
    Ricardo Alberich
    Mercè Llabrés
    Francesc Rosselló
    Gabriel Valiente
    BMC Bioinformatics, 21
  • [38] IDENTIFICATION OF FUNCTION MODULES IN PROTEIN-PROTEIN INTERACTION NETWORKS BY MODULARITY OPTIMIZATION METHOD
    Feng, Jun
    Jia, Ning-Ning
    Qi, Zhao-Hui
    Zhang, Xiao-Fen
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL. 1, 2015, : 47 - 51
  • [39] Characterization and modeling of protein-protein interaction networks
    Colizza, V
    Flammini, A
    Maritan, A
    Vespignani, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 352 (01) : 1 - 27
  • [40] Combining Protein-protein Interaction Networks with Structures
    Kar, Gozde
    Gursoy, Attila
    Nussinov, Ruth
    Keskin, Ozlem
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 649A - 649A