Stabilization strategies in extrusion-based 3D bioprinting for tissue engineering

被引:50
|
作者
Shapira, Assaf [1 ]
Noor, Nadav [2 ]
Asulin, Masha [2 ]
Dvir, Tal [1 ,2 ,3 ,4 ]
机构
[1] Tel Aviv Univ, Sch Mol Cell Biol & Biotechnol, Fac Life Sci, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Mat Sci & Engn, Fac Engn, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, Israel
[4] Tel Aviv Univ, Sagol Ctr Regenerat Biotechnol, IL-69978 Tel Aviv, Israel
来源
APPLIED PHYSICS REVIEWS | 2018年 / 5卷 / 04期
基金
欧洲研究理事会;
关键词
EXTRACELLULAR-MATRIX; IN-VITRO; FACTOR-XIII; BIOMATERIALS; HYDROGELS; CONSTRUCTS; SCAFFOLDS; BIOFABRICATION; FABRICATION; THROMBIN;
D O I
10.1063/1.5055659
中图分类号
O59 [应用物理学];
学科分类号
摘要
Three dimensional (3D) printing is a revolutionizing technology, which endows engineers, designers, and manufacturers with the ability to rapidly translate digital sketches into physical objects. The advantages that lie in the high resolution and accuracy of this technique were not concealed from the eyes of tissue engineers that soon harnessed this power for fabrication of complex biological structures. Nevertheless, while the conventional 3D printing scheme is oriented to yield durable and sturdy structures, the delicate nature of the substances used in 3D bioprinting results in fragile and mechanically unstable constructs. This poses a significant restriction that needs to be overcome in order to successfully complete the printing of intact, accurate, and biologically relevant constructs with desirable properties. To address these complications, advanced means of stabilization which are applied during and/or following the printing procedure are constantly being developed. In this review, the rational and principles behind widely used stabilization strategies in extrusion-based bioprinting will be covered. Examples of implementation of these strategies in recently published research in the field of tissue engineering will also be presented and discussed. Published by AIP Publishing.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability
    Zhou, Dezhi
    Li, Peixi
    Yu, Shuang
    Cui, Zhenhua
    Xu, Tao
    Ouyang, Liliang
    BIOFABRICATION, 2025, 17 (02)
  • [22] Current progresses of 3D bioprinting based tissue engineering
    Zeyu Zhang
    XiuJie Wang
    Quantitative Biology, 2017, 5 (02) : 136 - 142
  • [23] PRINTABILITY & CYTOCOMPATIBILITY TESTING OF XANTHAN GUM FOR EXTRUSION-BASED 3D BIOPRINTING IN WOUND HEALING
    Moura, F.
    Malferrari, S.
    Kalaskar, D.
    BRITISH JOURNAL OF SURGERY, 2021, 108
  • [24] Numerical modeling of hydrogel scaffold anisotropy during extrusion-based 3D printing for tissue engineering
    Mai, Van Than
    Chatelin, Robin
    Courtial, Edwin-Joffrey
    Boulocher, Caroline
    Rieger, Romain
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,
  • [25] Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting
    Read, Sophia A.
    Go, Chee Shuen
    Ferreira, Miguel J. S.
    Ligorio, Cosimo
    Kimber, Susan J.
    Dumanli, Ahu G.
    Domingos, Marco A. N.
    PHARMACEUTICS, 2023, 15 (10)
  • [26] Tissue engineering by decellularization and 3D bioprinting
    Garreta, Elena
    Oria, Roger
    Tarantino, Carolina
    Pla-Roca, Mateu
    Prado, Patricia
    Fernandez-Aviles, Francisco
    Maria Campistol, Josep
    Samitier, Josep
    Montserrat, Nuria
    MATERIALS TODAY, 2017, 20 (04) : 166 - 178
  • [27] 3D bioprinting in cardiac tissue engineering
    Wang, Zihan
    Wang, Ling
    Li, Ting
    Liu, Sitian
    Guo, Baolin
    Huang, Wenhua
    Wu, Yaobin
    THERANOSTICS, 2021, 11 (16): : 7948 - 7969
  • [28] Hydrocolloids for tissue engineering and 3D bioprinting
    Yildirim-Semerci, Ozum
    Onbas, Rabia
    Bilginer-Kartal, Rumeysa
    Arslan-Yildiz, Ahu
    INNOVATION AND EMERGING TECHNOLOGIES, 2024, 11
  • [29] Vascularization strategies for human skin tissue engineering via 3D bioprinting
    Shukla, Arvind Kumar
    Lee, Dongjun
    Yoon, Sik
    Ahn, Minjun
    Kim, Byoung Soo
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (03) : 86 - 115
  • [30] 3D extrusion bioprinting
    Yu Shrike Zhang
    Ghazaleh Haghiashtiani
    Tania Hübscher
    Daniel J. Kelly
    Jia Min Lee
    Matthias Lutolf
    Michael C. McAlpine
    Wai Yee Yeong
    Marcy Zenobi-Wong
    Jos Malda
    Nature Reviews Methods Primers, 1