Evanescence in coined quantum walks

被引:8
|
作者
Carteret, HA
Richmond, B
Temme, NM
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Lab Informat Theor & Quant, Montreal, PQ H3C 3J7, Canada
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[3] CWI, NL-1098 SJ Amsterdam, Netherlands
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 40期
关键词
D O I
10.1088/0305-4470/38/40/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we complete the analysis begun by two of the authors in a previous work on the discrete quantum walk on the infinite line (Carteret et al 2003 J. Phys. A: Math. Gen. 36 8775-95). We obtain uniformly convergent asymptotics for the 'exponential decay' regions at the leading edges of the main peaks in the Schrodinger (or wave mechanics) picture. This calculation required us to generalize the method of stationary phase and we describe this extension in some detail, including self-contained proofs of all the technical lemmas required. We also rigorously establish the exact Feynman equivalence between the path-integral and wave-mechanics representations for this system using some techniques from the theory of special functions. Taken together with the previous work, we can now prove every theorem by both routes.
引用
收藏
页码:8641 / 8665
页数:25
相关论文
共 50 条
  • [41] Generalized quantum teleportation of shared quantum secret: a coined quantum-walk approach
    Heng-Ji Li
    Jian Li
    Xiubo Chen
    Quantum Information Processing, 21
  • [42] Quantum Switching and Quantum Walks
    Chang, Ting-Hsu
    Lin, Tein-Sheng
    Chien, Chia-Hung
    Lu, Chin-Yung
    Kuo, Sy-Yen
    2013 13TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2013, : 456 - 459
  • [43] Generalized quantum teleportation of shared quantum secret: a coined quantum-walk approach
    Li, Heng-Ji
    Li, Jian
    Chen, Xiubo
    QUANTUM INFORMATION PROCESSING, 2022, 21 (12)
  • [44] Relation between random walks and quantum walks
    Boettcher, Stefan
    Falkner, Stefan
    Portugal, Renato
    PHYSICAL REVIEW A, 2015, 91 (05)
  • [45] Sedentary quantum walks
    Godsil, Chris
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 356 - 375
  • [46] Chiral quantum walks
    Lu, Dawei
    Biamonte, Jacob D.
    Li, Jun
    Li, Hang
    Johnson, Tomi H.
    Bergholm, Ville
    Faccin, Mauro
    Zimboras, Zoltan
    Laflamme, Raymond
    Baugh, Jonathan
    Lloyd, Seth
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [47] Anyonic quantum Walks
    Brennen, Gavin K.
    Ellinas, Demosthenes
    Kendon, Viv
    Pachos, Jiannis K.
    Tsohantjis, Ioannis
    Wang, Zhenghan
    ANNALS OF PHYSICS, 2010, 325 (03) : 664 - 681
  • [48] Sedentary Quantum Walks
    Godsil, Chris
    arXiv, 2017,
  • [49] Quantum walks, quantum gates, and quantum computers
    Hines, Andrew P.
    Stamp, P. C. E.
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [50] Irrational Quantum Walks
    Coutinho, Gabriel
    Baptista, Pedro Ferreira
    Godsil, Chris
    Spier, Thom'as Jung
    Werner, Reinhard
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2023, 7 (03) : 567 - 584