Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle

被引:0
|
作者
Zhukova, A. M. [1 ]
Panina, G. Yu. [2 ,3 ]
机构
[1] St Petersburg State Univ, Fac Liberal Arts & Sci, St Petersburg, Russia
[2] Russian Acad Sci, St Petersburg Inst Informat & Automat, Moscow, Russia
[3] Russian Acad Sci, St Petersburg Dept, VA Steklov Inst Math, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
polygonal linkage; configuration space; cell complex; discrete vector field; exact Morse function;
D O I
10.1070/SM8677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an exact discrete Morse function on the moduli space of a planar polygonal linkage. A cellular structure on the moduli space is used, and the number of cells is minimised by employing discrete Morse theory.
引用
收藏
页码:1353 / 1367
页数:15
相关论文
共 50 条
  • [21] Morse Sequences: A Simple Approach to Discrete Morse Theory
    Bertrand, Gilles
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2025, 67 (02)
  • [23] Ergodic theory on moduli spaces
    Goldman, WM
    ANNALS OF MATHEMATICS, 1997, 146 (03) : 475 - 507
  • [24] Moduli spaces of homotopy theory
    Blanc, D
    GEOMETRY, SPECTRAL THEORY, GROUPS, AND DYNAMICS, 2005, 387 : 37 - 63
  • [25] Parameterized Complexity of Discrete Morse Theory
    Burton, Benjamin A.
    Lewiner, Thomas
    Paixao, Joao
    Spreer, Jonathan
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 127 - 136
  • [26] Combinatorial topology and discrete Morse theory
    Blanchet, C
    Gallais, E
    Differential Geometry and Topology, Discrete and Computational Geometry, 2005, 197 : 31 - 72
  • [27] Discrete Morse Theory for the Barycentric Subdivision
    Zhukova A.
    Journal of Mathematical Sciences, 2018, 232 (2) : 129 - 137
  • [28] DISCRETE MORSE THEORY FOR MANIFOLDS WITH BOUNDARY
    Benedetti, Bruno
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6631 - 6670
  • [29] Merge trees in discrete Morse theory
    Johnson, Benjamin
    Scoville, Nicholas A.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [30] Parameterized Complexity of Discrete Morse Theory
    Burton, Benjamin A.
    Lewiner, Thomas
    Paixao, Joao
    Spreer, Jonathan
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2016, 42 (01):